AD-A217 964

L S

S Frdy o e Ty .
By cord . :
Bgiw il uqu, ‘)

WRDC-TR-89-1118

INTEGRATED CIRCUITS FOR AVIONICS

Raymond Siferd

Wright State University D T l C
Dept. of Electrical Engineering

134 Fawcett Hall

F _ECTE
Dayton, Ohio 45435

October 1989

Final Report for Period July 1985 ~ June 1989

Approved for public release; distribution unlimited.

Avionics Laboratory

Wright Research Development Center

Air Force Systems Command
Wright—Patterson Air Force Base, Ohio 45433

r e e

@, FEB 121090

TSI.‘.4: 7

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility or any obligation whatsoever. The fact that
the Eovemment may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention that
may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

/fl—,l:’d v (/ 4 ‘(<727{(| [?/q oﬁhk:,‘_l H‘:I.A'M
RICHARD C. STERLING, GS-13 FRANKLIN T. HUTSON. GM-14
Project Engineer Chief
Communications Technology Group Communications Technology Group

FOR THE COMMANDER

CHARLES H. KRUEGER JR °
Director

System Avionics Division
Avionics Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify
WRDC/AAAI, WPAFB, OH 45433-6543 to help us maintain a current mailing list.

_ Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

[[HIS PAS

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

18. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

Distribution is Unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)
WRDC-TR-89-1118

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING ORGANIZATION
(if applicable)

Wright State University

7a. NAME OF MONITORING ORGANIZA#ION
Avionics Laboratory (WRDC/AAAI)

Wright Research Development Center

6¢. ADDRESS (City, State, and ZIP Code)
Dept. of Electrical Engineeirng

Wright State University
Dayton, Ohio 45435

7b. ADDRESS (City, State, and ZiP Code)
WPAFB, OH 45433-6543

8b. OFFICE SYMBOL
(if applicable)

WRDC/AAAL

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION Wright Research

& Development Center

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F33615~85-C-1718

"8 ADORESS (City, State, and ZiP Code)
WPAFB, OH 45433-6543

10. SOURCE OF FUNDING!UMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO ACCESSION NO.
62204F 7662 0l 45

11, TITLE (nclude Security Classification)
Integrated Circuits for Avionics

12. PERSONAL AUTHOR(S)

R. Siferd, J. Birbal, W. Sweet, R. Hohne

I 13a. TYPE OF REPORT 13b. TIME COVERED

Final FROM_7/85 TO__6/89

15. PAGE COUNT
122

14. DATE OF REPORT (Year, Month, Day)
25 October 1989

16. SUPPLEMENTARY NOTATION

h-?r. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP VLSI, Signal Processing, Residue Arithmetic,
09 01 Narrow Band Filter, CMOS, Vector Processor, Systolic I

J n
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

--The main thrust of the Integrated Circuits for Avionics Program is to calibrate the chip
area requirements and performance that can be obtained from custom VLSI circuits which have
been designed to accomplish a specific communication signal processing task. The two
primary areas of investigation were stringent narrow band filtering based on highly parallel
VLSI systolic array architectures and vector processors based on the residue number theory
and highly parallel VLSI pipelined architectures. Designs are included for custom VLSI
programmable filters in both NMOS and CMOS technologles along with measured performance of
higher order filters resulting form cascading the custome prototype chips. A unique
multirate sampling scheme is presented for improving filter response. A unique custom VLSI
design is included for a high performance pipelined residue processor using 16-bit operands
and providing 32-bit results. Measured performance of this architecture is also included
based upon testing of a prototype custom VLSI circuit. This program was sponsored by Wright
Research & Development Center, WRDC/AAAI, Wright-Patterson AFB, OH 45433-6543.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
B uncuassireounumiteo O same as RPT. [oric users | Unclassified
228. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
Richard Sterlin (513) 225—3455 WRDC/AAAL
DD Form 1473, JUN 86 Previous editions are obsolete. RITY FICATION OF THIS PA

Unclassified

Contents

1 INTRODUCTION 1
1.1 PROGRAM REQUIREMENTS AND OBJECTIVES 1
1.2 PROGRAM STRUCTURE 1
1.3 SUMMARY OF ACCOMPLISHMENTS. 2
1.4 REPORTSUMMARY« o v v v v v 2

2 TASK I - PROGRAMMABLE FINITE IMPULSE RESPONSE
FILTER USING CUSTOM NMOS VLSI CIRCUITS 3
2.1 SPECIFICATIONS.« o v v o v it o e e 3
22 FIRTHEORY.« v o v v i v v 4

2.2.1 General FIR Filters 4

2.2.2 Linear Phase FIR Filters 4

2.2.3 Quantization Effectso 8

2.2.4 Coefficient Generation 8

2.3 DESIGN APPROACH 10
2.3.1 Reproducible Slice Approach 10

232 Floorplano oL 10
2.3.2.1 Addition of Data Samples 10

2.3.2.2 Coefficient Multiplication 13

2.3.2.3 Final Summation 15

2.4 CELL DEFINITIONS AND SPICE SIMULATION RESULTS16
241 2110 Dual FlipFlopCelo 17

2.4.2 2120 Multiplexed Output FlipFlopCell 20

243 2150 Standard Flip FlopCell 25

244 2160 Exclusive—-OR Input FlipFlopCell 25

245 2220 Adder Cell oL 25

2.4.6 2300 Multiplier Cell 36

2.5 SYSTOLIC ARRAY FOR HIGHER ORDER FILTER. 36
2.6 PERFORMANCE OF PIPELINED NINTH ORDER FILTER43

2.6.1 Multirate Sampling oL
27 TASKISUMMARY

3 TASK II - PROGRAMMABLE DIGITAL FILTER USING
CMOS TECHNOLOGY

3.1 ARCHITECTURE v v v v v v v v o

3.2 DESIGN APPROACH

321 Slice e e

322 Floorplano oL

323 ComponentsandCells

3.23.1 Latch

3.2.3.2 Carry Select Adder

3.2.3.3 ExclusiveOR

3.2.34 Multiplier

3.3 SIMULATIONS o
3.3.1 Spiceo

332 Esimo

il

34 CIRCUITRY v
341 7TthOrderChip
3.42 Filter Boardand A/DD/ABoard
3.5 PERFORMANCE EVALUATION OF 31ST ORDER FILTER . . .
36 TASKIISUMMARY.

TASK IIT - A HIGH PERFORMANCE VECTOR PROCESSOR USING

RESIDUE NUMBER THEORY, PIPELINING, AND VLSI TECHNOLOG¥Y

4.1 THEORY AND NOTATION
4.1.1 RNS Processor Research

42 PROCESSORDESIGN.
Choiceof Moduli
Conversion Hardware
PLA'S.o e
Conversion Hardware Details
Topology of the PRVP
Multiply — Accumulate Section
Mixed Radix Conversion

P DESIGN DETAILS
General Considerations
Detailsof PRVP
Conversion from Residue to Binary Details
AUDetails
RNS to Binary Converter Details
Controller and Interface

4.3

4.4

=
2
@

..........................

Problems
Speedand Power
4.5 TASK III SUMMARY

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS
5.1.1 Fast Arithmetic Circuits
5.1.2 Stringent Filtering Problem
5.1.3 Residue Number Processing

R U T
AW ww PN NN
LD NP W~ T U N =

5.2 RECOMMENDATIONS FOR FURTHER WORK
5.2.1 Resiaue Number System VLSI Processors
5.2.2 A Fast Parallel Divider
5.2.3 Highly Linear Analog Four Quadrant Multiplier Ce e
5.24 Gallium Arsenide VLSI Technology
5.25 BiCMOS Circuits
REFERENCES

List of Figures

RO 19 80 1
D BN =

B8O 0 8
W~

B 0 N
— O
—O

Block Diagram of a Digital Filtering System
Direct Implementation of a Nonrecursive Digital Filter Coe
Linear Phase Finite Impulse Response Filter
Magnitude vs. Frequency Response for a

Digital Bandpass Filter

Reproducible Filter Slices
Floorplan for a Filter Slice @
Multiplier Array Structure T e e e e e e
2110 Dual Flip Flop

a) Symbol00
b) Schematico oo
¢) Layouto L

2110 Dual Flip Flop SPICEoutput
2110 Dual Flip Flop Dynamic Current Draw
2120 Multiplexed Output Flip Flop

a} Symbolo

b) Schematic,
c) Layout

2120 Multiplexed Output Flip Flop SPICE Output
2150 Flip Flop
a) Symbol00
%b Schematic
¢) Layout

2150 Flip Flop SPICE Output
2160 XOR Input Flip Flop

a) Symbolo
b) Schematic00
c) Layout

Efficient XNOR Implementation
2160 XOR Input Flip Flop SPICE Output
2220 Adder Cell

a) Symbolo
b) Schematic
c) Layout

2220 Adder Spice Output for Sum Output
2220 Adder SPICE Output for Carry Qutput
2300 Multiplier Cell
a) Symbolo
b) Schematic C e
c) Layout

2.22 2300 Multiplier SPICE Output for Partial Sum Output 41
2.23 2300 Multiplier SPICE Output for Carry Output 42
2.24 FiveSliceChip 44
2.25 Test Circuit L0 44
2.26 Pipelined Filter Response 45
2.27 Multirate Sampling Response 46
31 Reproducible Slice 48
3.2 Floorplan00 ... 50 .
33 LatchCell 52
34 Latch Components 53 .
35 Dual SampleLatch 54
3.6 Chip Cascadingo 54
3.7 AdderCello, 55
3.8 Carry-Select Addero 56
3.9 Exclusive ORCell 57
3.10 Multiplier Block Diagram 59
3.11 Multiplier Cell 39
3.12 4-bit X 4-bit Multipliero o000 60
3.13 Spice Simulationo L. 61
3.14 Esim Simulationo L. 63
3.15 Physical Layouto, 66
4.1 Block Diagram of the Binary to RNS Hardware 77
4.2 Mod-29 PLA.o 78
43 Layout of the Binary to RNS Converter 79
44 Block Diagram of the PRVP 80
4.5 PLA Size Reduction 82
4.6 Cost of Interconnect in PLA Size Reduction 84
4.7 Solution to the Interconnect Problem 85
1.8 Typical AU Pieceinthe PRVP 86
4.9 Conversion from RNStoBinary 88
4.10 Sign Detection Hardware 89
4.11 Layout of the Conversion to Binary Hardware 91
4.12 Layoutof the PRVP 93
4.13 Floorplan of the PRVP 94
4.14 Detailed Schematic of the Binary to RNS Hardware 96
4.15 Layout of the Full Adder 97
4.16 Block Diagramof the AU 98
4.17 Block Diagram of the Carry Select Adder 99
4.18 Stack Bus Timing 101
4.19 Block Diagram of the Controller 102
4.20 Delay Hardware 104 .
4.21 PinOuts, 106 '
4.22 Photograph of the PRVP 107

List of Tables
4.1 ESPRESSO Input File

4.2 Instruction and Status Register Information @~ 103

vii

Section 1

INTRODUCTION

This report summarizes the accomplishments and findings under the Integrated
Circuits for Avionics program. In this program, Wright State University designed,
simulated, obtained fabrication, and tested Very Large Scale Integrated (VLSI) circuits.
Each of the VLSI circuits were custom designed to meet specifications provided by the
government for a real time signal processing application. The design, simulation, and
testing of the VLSI circuits were accomplished at Wright State University with computer
aided design tools and special testers assembled as part of the VLSI Design and Test
Laboratory. = The fabrication was obtained through the DARPA sponsored MOS
Implementation Service (MOSIS) [4]. The VLSI mask data developed during the design
and simulation phase were submitted to MOSIS over the CSNET and the fabricated
circuits were returned to the university in 8-10 weeks. The actual performance of the
fabricated custom VLSI circuits was measured to provide a benchmark of performance
verses circuit architecture, required chip area, and fabrication technology.

1.1 PROGRAM REQUIREMENTS AND OBJECTIVES

The main thrust of this program is to calibrate the performance that can be obtained from
custom VLSI circuits which have been designed to accomplish a specific communication
signal processing task. The specific signal processing tasks were defined by the government
and were in the areas of stringent narrow band filters based on highly parallel VLSI systolic
array architectures and vector processors based on the residue number theory and highly
parallel VLSI pipelined architectures. The results are based on actual hardware realization
and testing of prototype VLSI circuits. For each of the three tasks, two custom prototype
VLSI circuits were delivered along with an interim technical report detailing the design,
simulation. and tested performance. Although the circuits were not to be directly
integrated into a communication subsystem, the delivered package includes complete
details of the architectural approach, circuit logic designs, physical layouts, and simulated
and tested performance. This information will significantly improve the capability to
specify VLSI architectural approaches for signal processing circuits and also to specify more
realistic requirements with regard to performance.

1.2 PROGRAM STRUCTURE

The program consisted of three major tasks:

Task I A Programmable Finite Impulse Response Filter Using Custom NMOS VLSI
Componepts. Included as part of this task was the completion of a Custom
VLSI Design and Testing Facility at Wright State University.

TaskII A Programmable Digital Filter Using CMOS VLSI Technology. This task
differed from Task I in the approach for implementing arithmetic functions for
fast adders and multipliers as well as the fabrication technology.

Tagk II A High-Performance Vector Processor Using Residue Number Theory,
Pipelining, and VLSI Technology.

1.3 SUMMARY OF ACCOMPLISHMENTS

Specific accomplishments with quantified results will be discussed under the section for
each Task; however, listed below is a summary of several accomplishments resulting from
the Integrated Circuits for Avionics Program.

1. Defined unique VLSI architectures for implementing stringent programmable
finite impulse narrowband filters.

2. Measured performance and chip area requirements of custom VLSI
programmable filters in both NMOS and CMOS technologies.

3. Presented a unique approach to cascading lower order filters to improve
performance using multi-rate sampling.

4. Defined a unique VLSI architecture for implementing a high—performance
vector processor based on residue number theory.

5. One of the very few hardware VLSI realizations of a high performance pipelined
residue vector processor. To the best of our knowledge, the only residue
number system processor on a single chip using 16-bit operands and producing
32-bit results.

6. Measured performance and chip area requirements for the high performance
pipelined residue vector processor.

7. Calibration of design times, chip area requirements, and performance of typical
VLSI signal processing circuits. This will improve cost and performance
specifications for such circuits in future developments.

8. Development of a good design, simulation, and test capability for custom and
application specific VLSI circuits near the WRDC complex.

1.4 REPORT SUMMARY

Tais Final Report contains, in addition to this introduction, four technical sections.

Section 2 presents the specification, design, simulation, and tested performance for
Task I, a programmable finite impulse response filter using custom NMOS VLSI circuits.

Sections 3 and 4 present information corresponding to Section 2 for Tasks II and III.

Section 5 presents a summary of the findings under the Integrated Circuits for
Avionics program and includes recommendations for future work.

Section 2

TASK I - PROGRAMMABLE FINITE IMPULSE
RESPONSE FILTER USING CUSTOM NMOS
VLSI CIRCUITS

This section describes the design approach and implementation of a custom NMOS VLSI
architecture to perform finite impulse response digital filtering. The chip exploits
pipelining and parallel processing to increase throughput rates. Individual design
components (cells) are presented along with simulation results. System response is fully
pro?rammable within the limits imposed by filter length and processing speed. Optimized
coefficients are software generated using the Remez Exchange algorithm to minimize error.
Performance evaluations of third order and ninth order filter chips are presented.
Necessary support circuitry of an efficient programmable filtering system is discussed. This
section summarizes the details presented in the Task I Interim Technical Report [1].

2.1 Specifications
The following specifications were stated as design goals:

- The filtering system is to be able to process signals with frequency components in the
0 to 3 MHz range;

- Coefficients are to be selected so as to pass a 25-kHz window out of the 0—- to 3-MHz
range;

—~ The system is to be programmable in order to select different bandpass filter
responses;

- Out of band rejection of at least 80—dB.

As mentioned above, these are the performance ﬁoals of this project. Unfortunately, some
of these goals will not be met. First of all, the 80—dB out of band rejection is a high
expectation of any filtering system. This goal will not be met when coupled with the small
window width of the passband. The desired response of a digital filter is influenced by
several factors, the main ones being the amount of passband and stopband ripple that can
be tolerated, the width of transition regions, and the width of the bands. In order to have
the 25-kHz passband along with acceptably narrow transition regions, a tradeoff needs to
be made with the amount of passband and stopband ripple. In effect, this means that the
system described hereafter, in order tc satisfy passband and transition width goals, will not
satisfy the 80~dB out of band rejection goal. However, out of band rejection in the range of
50 to 60 dB may be achieved while meeting passband and transition width requirements by
cascading several filters. Further discussion on filter response and the effects of cascading
filter chips may be found in Section 2.6.

2.2 FIR Theory
2.2.1 General FIR Filters

Any discrete time system that is capable of accepting a digitized input and applying some
operation to it to yield an output sequence that is some modified variation of the input can
be classified as a digital filter. The basic block concept of the digital filtering system
considered here is shown in Fig. 2.1.

The difference equation for a digital filter can be written in the following general
form:

N N+1
y(nT) = Zh(i) x (nT —iT) - Zb(k)y(nT ~kT) .
i=0 k=0

This equation relates the nth sample of the output to the N previous values of the output
and to the M + 1 most recent values of the input. By choosing T, the sample period, to be
one, this equation can be written in a less complex form:

H+1

N
y(@) = Y hi) x (n-i) - Y b(k)y(n -k).
i=0 k=0

A filter whose present output value is dependent on past output values is said to be
recursive in nature. A nonrecursive filter is one in which the output is solely dependent on
past input values, i.e., all of the b(k) coefficients are zero. This type of filter is more
stable, and desired responses can generally be attained by a filter of reasonable length.
Rewriting the above equation for a nonrecursive digital filter yields

N
y(n) = zh(i) x(n-i).
i=0
This equation can be realized in direct form as shown in Fig. 2.2.

2.2.2 Linear Phase FIR Filters

A linear phase filter is one with a phase shift which is a linear function of frequency
resulting in a constant time delay for all frequency components. For a linear phase filter,
the coefficients are symmetrical which permits a realization that is more efficient than the
direct form. Since h(i% = h(N -1-1), the implementation of a linear phase filter can be
obtained as shown in Fig. 2.3. By taking advantage of the symmetry of coefficients, the
proper samples can be added before multiplying by the coefficients. This reduces the
number of multiples that must be made from N, for the direct form, to [(N -1)/2] + 1 for
the linear phase form.

Analog 1Input

|

A/D Converter

Digitized
Data

Digital Filter

Filtered
Digital
Output

D/A Converter

|

Analog Output

Figure 2.1
Block Diagram of a Digital Filtering System

5

x(n - 1) Xn-2) x(n-N+2) x(n - N+1)

x(n)

input z-1 z-1

h(0) h(1)=(®) h@2)=x) hN-2)=0Q)h(N-1)

y(n) output

Figure 2.2

Direct Implementation of a Nonrecursive Digital Filter

6

h(O}

. N-§ N-3
xn-1) xin-2) XO-=z=) xn-=5=)

-1“——:-’“—#— ooo-l—-z-l z-1

N+3 N+1

-N-1)|xin - N-2){ xin - N-3) |0 "=F X005~

SO S e I K X o

Figure 2.3

Linear Phase Finite Impulse Response Filter

7

xin - 1)

#

2.2.3 Quantization Effects

A number of factors, or quantization effects, degrade the performance of a digital filter.
Perhaps the largest contributor to error is the finite register length necessary for practical
applications. For example, when two binary numbers are multiplied together, the product
will require a number of bits equal to the sum of the number of digits in the two factors.
This can quickly lead to registers that are prohibitively long. Usually, the product is
rounded or truncated so as to consist of the same number of bits as the data word. This
rounding or truncating, however necessary from a practical point of view, leads to a
degradation in system performance.

Another source of error is in parameter quantization. Coefficients must be
represented by a finite number of bits. This quantization can lead to some slight error in
coefficient value. However, for reasonably long coefficient words, this effect becomes
negligible.

8 gThe analog to digital conversion process measures the value of the analog signal at
the sampling instant and assigns the amplitude to the nearest quantized value that can be
represented digitally. This leads to some error between the true amplitude of the analog
signal and the quantized level. This A/D conversion noise can lead to some error in the
output. Again, however, with a reasonably precise A/D converter with a reasonably wide
number of bits, this error is largely overshadowed by the errors involved with the necessity
of finite length registers.

Selecting a register length for data and coefficients is based on compromising
quantization effects with circuit size, complexity, and clock speed. The A/D conversion is
a difficult task for long word lengths and fast clocks. Data and coefficient registers of
12 bits each were selected for this project considering these tradeoffs and the design
objectives stated previously.

2.24 Coefficient Generation

The basic parameters of the magnitude versus frequency response for a bandpass filter are
shown in Figure 2.4. Passband and stopband ripples are designated by o1 and 02,
respectively. The passband is designated for frequencies in the region f2 < f < f3. Stopband
regions are defined for f < f1 and for f > f4. Transition regions are given by fl1 < f < f2 and
f3 < f < f4. Normalized passband and transition widths can be defined in terms of the
sampling frequency, fs, as follows:

normalized passband = BW = (3 — 12) /fs
normalized transition width = (f2 - f1)/fs = (14 — 13)/1s

The response of a fixed finite length digital filter at a given sampling frequency
trades off optimal passband and transition widths and the amount of ripple present. For
example, suppose a response that allows a 25-kHz passband with 25-kHz transition regions
is desired for an 11th order filter with a fixed sampling frequency of 5 MHz. The selection
of coefficients for this application will yield a response that has certain amount of passband
and stopband ripple. The stop and ripple is directly related to the amount of out of band
rejection for a filter. Now suppose the transition widths are changed to 125 kHz. The
amount of ripple will be significantly less, but this improvement is achieved at the high
cost of widening the transition regions. Changing the width of the passband region while
maintaining the same transition widths will have a similar effect. Choosing the optimal
combination of tramsition widths and allowable passband and stopband ripple,
presupposing that the passband width is defined and unchangable, is a process that often

Magnitude
Response

Figure 2.4

Magnitude vs. Frequency Response for a Digital Bandpass Filter

9

requires many iterations and at times approaches an art. Luckily, programs exist that
calculate normalized coefficients when given passband and stopband region definitions for
filters of a given length.

Filter coefficients determine the exact response of a filtering system for a given filter
length and sampling frequency. A program named FIRDESIGN [9] exists on the RICC
VAX 785 that aids in coefficient calculation. The program is distributed by the IEEE
Acoustics, Speech, and Signal Processing Society. The program uses the Remez exchange
algorithm to calculate coefficient values for linear phase finite impulse response filters
which are optimized with regard to minimizing the ripple in the pass and stop bands.

23 DESIGN APPROACH

23.1 Reproducible Slice Approach

The diagram shown in Fig. 2.3 can easily be broken up into several identical, regular
portions, or "slices." Reproducible slices of the linear phase FIR filter are shown in Fig.
2.5. Sample (n-1) comes from the previous slice, while sample (n — N — i) returns from the
next slice. The samples are added and the sum is weighted by a factor h(i) to produce a
partial result p(i). Summing the partial results of each slice yields the filtered output y(n).

Three different types of slices can be defined: the first slice, the middle slice S:)' and
the last slice. The first and middle slices are identical to Fig. 2.5(a) except that the first
slice has no need to pass on the returning sample, and the incoming sample is the digitized
analog signal instead of a past data sample passed along by a previous slice. For all
practical purposes, however, the first and middle slices perform the same function in that
both process two samples.

The last slice, shown in Figure 2.5(b), is unique in that it processes only one sample
and, rather than pass that sample on to the next slice, returns it to the previous slice. This
accounts for the symmetry afforded by the linear phase approach. The component
organization of the last slice can be identical to that of the first and middle slices, with the
unique functions realized by appropriate wiring. This allows for a more regular layout and
easier interconnection between slices.

23.2 Floorplan

Figure 2.6 shows a floorplan for a slice of the filter. Included in this slice is part of the
final summation circuitry necessary to add all of the partial results p(i) to yield the filtered
output y(n). The actual design of the chips uses data and coefficient word lengths of 12
bits each. However, the architecture presented hereafter is in no way constrain by these
numbers. It is easily expanded for any lengths selected for data and coefficients words.

2.3.2.1 Addition of Data Samples

The first five rows of the floorplan shown in Figure 2.6 accomplish the addition of the data
samples and convert the sum to a positive number if it is negative.

10

et (N1 1)

p— X{n-N)

x(n-i) == 2-1
x{n-N--1) Z2-1
+,
i) x
ol)

(a} First and Middie Sices

Reproducible Filter Slices

Figure 2.5

11

21

o I_]_*""'“'

[Sample Pitp Flepe (2210)

o J | LY
—— S AN > smple te-t-1)

[.% aseor (320) :h'
Y
g” rfomm) I.—"l:l: (IM—)“-“_“.-"'

1

N

adder (2320)
st s enplanmt of dow Wl f e G Wt 5 Mgt L]

Bete ity Piepe (2138) I
)
B Pirst § Balttpiser (2300) r—;T
(uw) (2300) —>
() - (3300) —_
2 (3300) —
o) €2300) —
dats wapd J/ A]/-"“' om
:‘u'-)u) ? @ Pipe (2120) I——) EEE:::-.
L
:]i Sessnd | Waltipliter (2300) ._.)
<2300} —
a0] 3
(2300) | >
' (2300) —
(2300) —
-~ —/
@ 1 -"”Mml-—m-nh—- J
N P < ae
——r-——dn‘.-:'-:s::)--n-—- > “}—)
i)
——rnd—amnuﬁm. o1 oten 15 mgectee nk—(ﬂ*ﬂnuw

i

l Riip Piope (2130)
lﬂm)

S—

Figure 2.6
Floorplan for a Filter Slice

12

The first row in the floorplan contains dual flip flop cells to hold the samples. Data
samples are stored in two’s complement form. The samples are added by the second row of
cells. No overflow detection is provided. Recovery from overflow is a difficult problem,
and any recovery procedure will still yield results that are not consistent with results
obtained during normal (i.e., no overflow) operation. Thus it was decided that if the filter
output would be inaccurate anyway, no effort would be spent to minimize the inaccuracy.
This is the usual approach taken towards overflow problems in digital filters. In any case,
the overflow problem can be avoided by supplying an input signal that is sufficiently
attenuated such that any two sample values, when added, will not cause overflow. This is
easily accomplished in a digital filtering system by dividing down the analog input before
supplying it to the A/D converter then amplifying the D/A output by the necessary
amount once the filtering is accomplished.

The next three rows convert the sum to its two’s complement positive representation
if it was negative and preserve the original sign of the sum. This conversion is necessary
because the parallel multiplication approach used works properly only for positive numbers.
The third row consists of flip flops that perform an exclusive-or function on two inputs
then store the result. This implements an efficient way to perform a one’s complement
operation. Flip flops were used for timing purposes in order to break up the combinational
logic functions and speed up overall operation. The fifth row consists of an adder to
complete the two’s complement conversion process and a flip flop to store the original sign
of the sum. The last row of the data sample addition section of the floorplan consists
simply of a register used to store the data factor for the multiplier and an exclusive—or flip
flop that uses the coefficient sign along with the original sign of the sum to determine the
sign the product will carry.

The last slice of the filter utilizes the same component organization described above,
but implements appropriate functions by appropriate wiring. The incoming data sample is
clocked into both of the sample flip flops to accomplish the end-around data routing
necessary in the last slice. The adder, instead of adding the outputs of both sets of flip
flops, only accepts the output of one set of flip flops and adds this to zero to account for the
wiring modification described above.

2.3.2.2 Coefficient Multiplication

The next 12 rows represent the coefficient register and multiplier. Coefficients are stored
in sign-magnitude form. The coefficient registers of each slice are lined Q to D for efficient
loading. When a coefficient load signal is activated, each coefficient flip flop sample passes
the value at its input to its output. Thus a virtual common coefficient bus exists, with
each bit of the coefficient register having the data on the bus at its input. The registers are
then selectively clocked to store individual coefficient values. When the load signal is
removed, the input—to~output link within each coefficient flip flop is broken, and each
register ouputs its proper coefficient value to the multiplier.

The multiplier itself uses an (n-1) by (m-1) array of Guild cells to form the product,
where n and m are the lengths of the coefficient and data words, respectively. Figure 2.7
shows the organization of the Guild parallel multiplier cell and the associated array
structure that forms the multiplier. Coefficient bits are applied to each row of the array,
and data bits to each column. The coefficient bits control the operation of the row to
which they act as inputs. If the coefficient bit applied to a particular row is a zero, the
partial sum input to that row is passed on unchanged, i.e., nothing is added to it. If the
coefficient bit is a one, the data word is added to the partial sum in its proper position.
Shifting of the data word to its proper position is accomplished by proper cell
interconnection within the array. The product is output by the least significant cells of
each row and by the final row in the array.

13

9
—Q
A4
— QO
fe— o
—o
&
r-O

o &

-0

-0

¢_.
» -
-
3 -

(2]

Carry out =

T Ce s

Cam

Guild cell

Figure 2.7
Multiplier Array Structure

14

The multiplication of an n bit number by an m bit number will require n+m bits to
represent the full product. Due to finite register limitations, this product must be
truncated or rounded to a lesser number of bits in digital filtering applications. The
product is usually made to occupy the same number of bits as does the data word. The
particular effects of truncating or rounding are for the most part indistinguishable; the
main damage is done by cutting off the product bits of lesser significance. This design
injects a high carry input value to the last row of the array, and limits the product to the
most significant (m-1) bits. The effect of this is to round the product up to the most
significant (m-1) bits.

The multiplier array described works only for positive numbers. Negative data word
conversion is accomplished by the data sample addition section described in section 2.3.2.1.
Coefficients are stored in sign—magnitude form. Since only positive numbers are being
multiplied, the sign bits of the coefficient and data words contribute nothing to the result.
Hence, an n by m array would be wasteful, since the product sign would always be positive.
Therefore, the smaller array is used and the sign bits are not input to the multiplier. If the
signs of the data and coefficient words indicate that the product is to be negative, the
co2mp1ementing process is carried out by the final summation circuitry described in section
3.2.3.

Propagation through the multiplier can be rather slow. In the worst case, a carry
will need to propagate down the entire length of the first row in the array, then down an
entire column. This means that the worst case propagation time will be approximately
((n-1) + (m-1)) * (carry propagation time for one cell). For this design, n and m are 12
bits each. This means that approximate propagation time through the array will be 22
carry propagation times.

The multiplication process can be speeded up by splitting the array into two halves
and placing a pipeline between them. The data word and partial sum must be saved in the

ipe. Now the worst case propagation time will be approximately ((n-1) + (m-1)/2) *
?ca.rry propagation time for one cell). This works out to 16 or 17 carry propagation times,
depending on whether the first or second multiplier half is under consideration. This is
approximately 3/4 the time required were the pipe not in place. The speed benefits
provided by such a simple enhancement technique were deemed desirable and were
therefore undertaken.

The coefficient register and multiplier array organization are identical for the first,
middle, and last slices of a filter design.

2.3.2.3 Final Summation

The final four rows of the floorplan simultaneously complement the output of the
multiplier if the product sign is negative and adds in the product of the next slice.
Exclusive—or input flip flops are again used to perform efficient one’s complementing based
on the product sign. Two adders are necessary to complete the two’s complementing
process because of the possibility of both products being negative. The final row of the
floorplan is a register used to store the sum of the products.

The finai three rows of the floorplan are shared between every two slices. The
outputs of every two slice combinations still need to be added together to form the final
filtered output y(n). There are no necessary modifications to the last slice as long as the
total number of slices is even. However, if there are an odd number of slices, one of the
slices (presumably the last slice) will have to account for the extra summation circuitry
present by tying the next—slice adder inputs to zero.

15

24 CELL DEFINITIONS AND SPICE SIMULATION
RESULTS

A quick study of the floorplan just presented shows that six different custom cells are all
that are needed for implementation. They are as follows:

1. A dual flip flop cell to hold samples and for the multiplier pipe (cell 2110);

2. A special)multiplexed—output flip flop for use as a coefficient register element
cell 2120);

3. & standard flip flop for use in registers (cell 2150);

4. A flip flop cell with an exclusive-or gate at its input for efficient complement
cell 2160);

5. n adder cell (cell 2220);

6.

A parallel array multiplier cell (cell 2300).

In addition to these customer cells, library cells for input and output functions are used.

All cells were laid out according to lambda-based scaleable design rules supplied by
the MOSIS (MOS Implementation System) fabrication facilities based at the Informational
Sciences Institute at the University of Southern California [4]. The lambda—-based scaleable
design rules allow a layout to be constructed using design rules based on a unit of length,
lambda, which has no direct physical significance. This allows designs to be scaled down
without having to create new layouts as technology improves and allows smaller device
fabrication. T%u's design assumes A = 1.5 microns. If technology improves so that circuits
for, say A = 1 micron become common, the layout for this design should not need to be
changed. Future chips will simply occupy less area.

For the most part, the nMOS design process prescribed by Mead and Conway [3] was
followed; exceptions are noted in the following discussion. Layouts for all cells were made
so as to appropriately stack with neighboring cells and allow ease of interconnect between
cell rows.

SPICE [10] is a circuit simulator that produces the time response for a given network
of resistors, capacitors, and semiconductor devices that are influenced by ome or more
inputs defined by the user. The Metheus/CV CAD system supports software tools that
create network listings (netlists) from either schematics or physical layouts in a format
acceptable as SPICE input. In this fashion, schematics can be simulated to provide an
initial logic and timing verification of cell operation. Once verification is complete and a
physical layout is constructed, a net list created from the layout is simulated. This netlist
includes parasitic capacitances and therefore yields more accurate timing analysis.
Parameter files for depletion and enhancement nMOS devices were constructed for use as
device models using data provided by MOSIS for typical production runs.

In addition to the netlist to be simulated, SPICE allows additional circuit elements
to be added to the network. Typically this includes additional resistors and capacitors
used as load elements to more accurately model the output characteristics of a cell. SPICF
will also allow simulation at different temperatures. To provide some semblance of worst
case analysis, all cell simulations were carried out at 100 degrees C and with 0.5 pF load
capacitance.

We should note that although SPICE is an excellent circuit simulator that provides
accurate cell analysis, the scope of this simulator is small. It is intended for use when
simulating small circuits, and is not appropriate for large circuit simulation. SPICE is a
very computationally intensive program that requires a rather long amount of time to run.
Typical simulations for the flip flops described below require about a half an hour of
dedicated CPU time. Attempts to simulate circuits containing more than a few cells
become prohibitively time consuming. In addition, the system runs out of swap space, i.e.,
runs out of memory, when attempts are made to simulate large circuits.

16

24.1 2110 Dual Flip Flop Cell

Figures 2.8a, b, and ¢ show the symbol, schematic, and layout for the 2110 dual flip flop
cell. Both flip flops are designed using the standard quasi-static feedback two—phase
master—slave approach. This approach allows the old Q to circulate in the slave portion of
the flip flop during one phase of the clock. During this time, the master accepts new data.
When the two phases toggle, the value on the D input at the time the clock changed is
circulated in the master portion of the flip flop and is passed through the slave portion to
the output. When the phases toggle again, the new Q is held by the slave portion, and the
master is once again able to accept new data. These flip flops were designed to change on
the falling edge of the primary clock.

There are obviously setup and hold time requirements for such flip flops, but these
requirements were largely ignored by this analysis. Such times are short, typically on the
order of 3 to 5 ns, depending on the rise and fall times of the two clock phases and on their
associated skew. Study of t%xis design reveals that no serious race conditions occur. Setup
times for all flip flops in this design will be at least (clock period) — (flip flop and logic
propagation delay), which is at least on the order of hundreds of nanoseconds. The worst
case hold time will be the propagation time through a flip flop. Typical propagation times
for these flip flops is about 15 ns, which is well into the safety range for hold times.

There are two points of interest concerning this particular design. The first is that
the outputs are driven by noninverting superbuffers rather than a simple inverter. The
reason for doing this is obvious in that it greatly improves the drive capability of the flip
flops without adding any real cost in terms of design time or silicon real estate. The
superbuffer approach works by driving the depletion device of the second inverter with the
input to the first inverter rather than by its own output. When trying to switch to a high,
the gate of the depletion transistor of the second inverter goes high prior to the output
going high. This yields a positive Vgs during the transition period of the output, thus
turning the device on harder. This lowers the pullup resistance offered by the depletion
load, allowing more current to charge output capacitances. At the same time, the output
of the first inverter quickly turns off the enhancement mode device of the second inverter,
since the gate of the enhancement device is the only load on the first inverter. A similar
scenario occurs when trying to switch to a low, only this time Vgs for the enhancement
device of the second inverter goes negative, thus increasing the pullup resistance. This
allows the enhancement pulldown device of the second inverter to discharge a capacitive
load more quickly. The end result is that rise times of the noninverting superbuffer are
approximately half those that would be expected were the flip flop output simply inverted
twice. Fall times are decreased somewhat also, but the improvement over the already
excellent fall time characteristics of nMOS inverters is not so drastic. However, fall times
will improve by a few percent.

The second interesting part is the fashion in which the device is clocked. A single
clock input is inverted twice to produce the two phases necessary. This reproduction of the
two phases occurs with each cell. This does not strictly produce a two—phase
nonoverlapping clock as suggested by Mead and Conway K3] since, due to propagation
delays, a short time will exist when both phases of the clock are active (high). This
overlap can be neglected if the design meets the following criteria:

- The loads on each of the clock lines must be approximately equal so that the

rise or fall time of one of the clocks is not slowed up to the point that it extends
the overlap period to a critical point; and

17

R .
011
é..c CN 2110
22
S__lo2

Ql
Dl
— L
T
1
—y Q2
D2 | _J | L r—%
e
—J
3 1:’
]
T
CKN

Figure 2.8 (a), (b)

a) 2110 Dual Flip Flop Symbol
2110 Dual Flip Flop Schematic

18

CKN D2 D1 Ql
7 ;
% v vaa

%

N
N
W

GND

B NN, B

vaa

298080 oA 3

GND

FAAL AL,

A7y

ri vy

i i
i s

vaa

Q2 D2 Ql

Figure 2.8 (c)
(c) 2110 Dual Flip Flop Layout

19

-

The load on the clock lines must be sufficiently small so that clock rise and fall
times can be sufficiently fast so as to constrain the overlap to a sufficiently
small period of time.

These criteria were verified by monitoring critical nodes within the flip flops during SPICE
simulation runs. '

The clock scheme described above has other advantages as well from the chip timing
and interconnection point of view. First, only one clock needs to be routed around the
chip. This eases wiring, reduces skew problems throughout the chip, and eliminates skew
problems between the two clock phases, since theses phases are reproduced locally inside
each cell. Also, because of this local reproduction, the system wide clock can have slower
rise and fall times without degrading system performance.

The physical layout for this cell is contained in a 71\ by 154\ area. Power busses
stack from side to side. Inputs and outputs emerge from the top and bottom of the cell
according to necessity in order to allow easy interconnect with neighboring cell rows.
SPICE simulations of the layout give worst case propa.§a,tion delays of 15 ns (clock to Q)
and rise and fall times of 39 ns and 6 ns, respectively, for an output load of 0.5 pF and at
100 degrees C. The SPICE output for one of the two outputs of this cell is shown in Figure
2.9. The graph for the other output is identical.

SPICE will also simulate the current drawn from a voltage source. Figure 2.10 shows
the dynamic current drawn from Vdd for cell 2110. By monitoring the peak current values
and making the worst case assumption that every cell in a row might hit the peak
simultaneously, the minimum width for power lines through the cells can be calculated.
MOSIS guarantees minimum sheet current carrying capability of 1 mA per micron width.
By calculating the maximum current a row may draw, the appropriate width of power lines
can be determined by using

(max current mA) / (1 mA/micron) * (0.667 lambda/micron),

assuming that A = 1.5 microns. Similar analysis was carried out for the other custom cells
used in this design and for the wide power busses that supply Vdd and ground to the cell
TOWS.

242 2120 Multiplexed Output Flip Flop Cell

The symbol, schematic, and layout for the 2120 multiplexed output flip flop cell are shown
in figure 2.11. The flip flop itself is identical to those of cell 2110, with the same output
superbuffering and clock generation scheme. The unique feature of this cell is the
multiplexer on the output that selects either Q or D, depending on the state of the LOAD
input. The multiplexer itself is constructed simply of pass transistors, which degrades the
output of this cell. However, this poses no serious problem since coefficient loading can be
a relatively long process, and since the coefficients, once loaded, don’t change for a given
filtering application. The output of the multiplexer is pulled up by a very weak depletion
mode transistor. This was done to insure that the output would rise the full range of Vdd
so that other cells which accept this output as input would not need to consider inverter
ratio requirements. Simulations were carried out to insure that both highs and lows could
be propagated down the entire length of the bus when the virtual coefficient bus is in
existence. The configuration described has no difficulty passing on a high value, but
problems can develop when propagatinsa low if the output pullup devices are too strong.
This cell was constructed in a 71A by 103 area. Power busses are stacked from side
to side. Inputs and outputs are brought out to the top and bottom of the cell for ease of
interconnect. Clock and load inputs stack top to bottom to allow easy register

20

[CIRCUIT 2110 DRIT. GAT (1 05 18 31 18 1060 (File 2110)

508 -3)4y——~—————— [k

4.50 -347u~-

4.88 -379u-

5.58 -412u-

500 -444y-

2 58 -476u-

2.88 -509.-

] 58 -541u-—

1.8 -574u-

B 50 -6B6.-
/

-6 88 -63%yT----- Fo====] !
Bn 30n 60n 90n 120n 156n

GROUP 1 1(VDD>
GROUP 2 W(4) _V(5) V(3) V(1) W)

Figure 2.9
2110 Dual Flip Flop SPICE Output

21

UlT: 2110

DATE SR OC1 o6 1B 51 18 100 (File 2110)

500 ~314y————————y
450 -347-
4.0 -370u-
3.50 -412u- ,
5.00 -444u-
2.50 476~
2.0 -509.-
1,50 -541y-
1.80 -574u-
B.50 -686u-
B e 60 9B 128 1S0n 180 218 24Bn 270n 508
GROUP {: 1(VDD) e
GROUP 2. V(&) V(5> W3 V(1) WD)
Figure 2.10

2110 Dual Flip Flop Daynamic Current Draw

22

5

a
b

3

Figure 2.11 (a), (b)

LD
2 1o o | _d
2128
ok
LD
R gl J"‘
—
SR
%————cn b— { { 'rll _L‘|
T]
= —
CKN

2120 Multiplexed Output Flip Flop Symbol
2120 Multiplexed Output Flip Flop Schematic

23

CKN D LD

vaa

N\

\
ii\\
.

GND

N

vad

CKN LD

Figure 2.11 (c)
(c) Multiplexed Output Flip Flop Layout

24

interconnection. In addition, D and Q stack side to side to allow easy formation of the
virtual coefficient load bus described earlier. The Q output also stacks with the coefficient
input to the multiplier cells, since these cells are adjacent in the layout. SPICE
simulations of the layout give a worst case propagation delay of 14 ns (clock to Q) and rise
and fall times of 30 ns and 7.5 ns, respectively, for an output load of 0.5 pF and at 100
degrees C. Figure 2.12 shows graphical SPICE output for this cell.

24.3 2150 Standard Flip Flop Cell

Figure 2.13 shows the symbol, schematic, and physical layout for the 2150 standard D type
flip flop cell. This cell is a single flip flop version of the 2110 dual flip flop cell described
earlier and is identical in conﬁﬁuration. It employs the same output superbuffering and
clock generation. The physical layout for the 2150 was constructed in a 71X by 82X area.
SPICE simulations yielded a worst case propagation delay of 14 ns (clock to Q), with rise
and fall times of 39 ns and 6 ns, respectively, for an output load of 0.5 pF and at 100
degrees C. Figure 2.14 shows the graphical SPICE output for the simulation of the timing
characteristics of this cell.

244 2160 Exclusive-OR Input Flip Flop Cell

Figure 2.15 shows the symbol, schematic, and layout for the 2160 exclusive-OR input flip
flop cell. This cell accepts two inputs and stores their exclusive—ORed output in the flip
flop. Aside from the obvious difference in input characteristics, this device is different from
the other flip flops in that the output is not driven by a superbuffer. This was done to
facilitate the preservation of loigic levels. The (exclusive) logic at the input actually
implements an exclusive-NOR tfunction the quick and dirty way using pass transistors.
Figure 2.16 shows the schematic for this implementation. The design uses only three
transistors, is easy to lay out, consumes very little silicon area, and works for this
application. Drawbacks include poor driving capability, but this can be ignored in this case
since the output does not drive any logic outside the cell and only drives one gate through
a pass transistor inside the cell. 4

The value stored in the flip flop is the exclusive-NORed output of the two inputs. In
order to restore proper logic levels, the Q’ output is brought outside the cell.
Superbuffering is not necessary since that the output load is suificiently small for all
instances where this cell is used.

The physical layout for this cell is contained on a 71\ by 82A area. Power busses
stack from side to side. Inputs are accepted at the top of the cell, and the Q output is
available at both the top and bottom of the cell. SPICE simulation gives a worst case
propagation delay (clock to Q) of 20 ns and rise and fall times of 60 ns and 6 ns,
respectively, for an output load of 0.5 pF and at 100 degrees C. Figure 2.17 shows the
simulation output for this cell.

2.4.5 2220 Adder Cell

The symbol, schematic, and physical layout for the 2220 adder cell are found in Figures
2.18a, b, and c. The adder employs a distributed gate approach to implement the sum and
ripple carry functions. The basis of this approach is to combine NAND and NOR functions
into a gate with a common pullup to implement and AND-OR-INVERT function. There

25

IEIELU]] 2120 DRTE Ul JAN B)2 35 12 10& (File. 2128)
500 -17% L
’ | ,-fr‘ ‘ .
. X X
/ !]
4.5 -193u- | '
! [
! '
f 1
488 -21lu-) '
1 [
' |
! |
3.5 -229u- ' ,
| t
! |
! 1
300 -247y- ' .
' '
| [
250 -265u- !)
1 \
' 1
! |
2.e8 '2%0" 1 3
! 1
! [
! '
150 -382u- ‘ \
! 1
! 1
| 1
1.80 -3528u- ' \
| |
! 1
.58 -338- : :
! 1
[
'B ae ‘SSGuf T 1 1 L T f | 1
Bn 50n 106n 158n 200n 250n 300 358n 486n 450~ naléﬂn
GROUP 1: T(VDDD
GROUP 2- Vea) W2y V(3 vl
Figure 2.12

2120 Multiplexed Output Flip Flop SPICE Output

26

™o

3

CN

X

—

A‘O

+—L

—C

%

a
b

|

Figure 2.13 (a), (b)

2150 Flip Flop Symbol
2150 Flip Flop Schematic

27

° a 9
°
& 2

_t NN

.............................

G T S R s,) ey AR

28

..._ 7 BB
: <5 mmnfﬁ

//// R

oy AR s B (O B NN

/// I R AT /W

Figure 2.13 (c)

(c) 2150 Flip Flop Layout

CKN

WET JN R 17 35 57 10 (File. 2160)

Dot

250

[ETRCT

400

368~
TInE

1
328n

I 4 — \
llllllllllllllllllllllllll
lllllllllllll)
-. -
-
N
~———— == = - T T T e L ._-m
/1/0/
| §
lllllllllllllllllllllllllllll —, - 3
lllllll
(4
-~
o~
—
E
llllllllllllllllllllll
lllllllllllllllll
~v T n
=S
-
1 | | 1 nw | | ﬁw N anm
a D
wl - - ~ " o ~ —_ — = .

Figure 2.14
2150 Flip Flop SPICE Output

29

—i

Li:i:
]

Ok

2160

"

[

Figure 2.15 (a), (b)

b

a) 2160 XOR Input Flip Flop Symbol
2160 XOR Input Flip Flop Schematic

30

Figure 2.15 (c)
(c) 2160 XOR Input Flip Flo

31

p Layout

vdd

vad

Figure 2.16
Efficient XNOR Implementation

32

CIRCYUTY 716k DRi: UED 'oN B 17 36 A1 198 (F.le: 2168)

S b

1 A

4 5-

4.0e-

PN ——

7 50— - [

|
|
|
|
|
|
|

|
3.0e- ‘
2.50- '

.08~

~Y

1 58-

1.02-

D 50- ! L
— . /

-¢ 08— -+ T T T + I T T)
Bn 62n 128n 182~ 240 390n 360n 420n 488n 540n 608n

TIME
BROUF 1- V(2) V(4) V(33 V(1)

Figure 2.17
2160 XOR Input Flip Flop SPICE Output

33

Ie

J1
“
.|

m N P

e
e
mj

2 2 -’
I a1 o]
) [
T +
L4 *
= - L

Figure 2.18 (a), (b)
233 2220 Adder Symbol

b) 2220 Adder Schematic

34

o ————————————

’7 //

vaa

co . '. ;_,,_ i S

NN

L it N\

GND

SEREN
ny 0y 3 2
HELL S
&\

Figure 2.18 (c)
(c) 2220 Adder Layout

35

are several branches which may cause the output of this gate to go low; this implements
the NOR part. However, there are several conditions that must be true in order for a
particular path to be able to pull the output low; this implements the NAND part.
Appropriate combinations of the two adder inputs, the carry input, and their complements
act as inputs to these gates to form the sum and carry out functions.

This cell was constructed in a 71\ by 103X area. Power busses stack from side to
side. A and B inputs to the adder are available at the top of the cell, and the sum is
output at the bottom of the cell. Carry in and carry out stack from side to side to allow
fabrication of multibit adders. SPICE simulations give a worst case propagation delay of
48 ns and rise and fall times of 99 ns and 12 ns, respectively, for the sum output, and times
of 41 ns, 94 ns, and 12 ns for propagation delay, rise time, and fall time, respectively, for
the carry output, for output loads of 0.5 pf and at 100 degrees C. Figures 2.19 and 2.20
show graphical SPICE output for the sum and carry outputs.

The timing characteristics of this cell seem rather slow. It should be noted that the
output load of 0.5 pf was arbitrarily selected for simulation purposes, and that actual loads
(and therefore delay, rise, and fall times) will be smaller.

24.6 2300 Multiplier Cell

The last custom cell, the 2300 Guild multiplier cell, is depicted in Figure 2.21. This is
simply a modification of the 2220 adder cell with the AND of the coefficient and data
inputs going to one input of the adder and the partial sum input going t the other. This
cell was constructed in a 71X by 103\ area. Power busses stack from side to side. The
data input feeds through from the top to the bottom of the cell for ease of interconnection
when the multiplier array is formed. Likewise, the coefficient input feeds through the cell
from side to side, and the carry input and carry output stack from side to side. The partial
sum output is available at the bottom of the cell. SPICE simulations give a worst case
propagation delay of 47 ns and rise and fall times of 99 ns and 12 ns, respectively, for the
partial sum output, and times of 45 ns, 96 ns, and 12 ns for propagation delay, rise time,
and fall time, respectively, for the carry output, for output loads of 0.5 pf and at 100
degrees C. Again, the output load was arbitrarily chosen for simulation purposes, and
actual circuit performance will be more acceptable. Figures 2.22 and 2.23 show graphical
SPICE output for the partial sum output and the carry output of this cell.

2.5 SYSTOLIC ARRAY FOR HIGHER ORDER FILTER

The custom cells described earlier were used to construct a ninth order filter chip. The
design is contained in a 64 pin standard pad frame issued by the MOSIS fabrication facility
and sealed for use in A = 1.5 micron designs. Interior project dimensions were 7900 by
9200 microns. The design was built using an heirarchical approach to construct a network
of cells that conform to the floorplan discussed previously. Figure 2.24 shows the cell
organization of the ninth order chip with the required 5 slices of previously presented
floorplan. Note that filter required only about half of the 7900 by 9200 micron frame.
This structure is a classical example of a linear systolic array, with a number of identical
processors designed for a specific application. Each processing element performs the same
function simultaneously on different data, with data being exchanged with adjacent
processing elements.

The ninth order chip was fabricated by the MOSIS facility and its performance is
described in the next section.

36

(CIRLUIY 222¢ DRIL- WEC JAN B 17-3b 37 10BE (File 222B)
Y I f
A
|

4.80- ’

‘:‘ Bﬁ* r I

]

]

i '

4.5~ : \
'
]

3.58- X

W TR e = e e o om m w — a

3.08-

<.58-

2.80-

1.50-

= —

1.80-

2 50~

%‘,::_::.-_:—-'-

[}
4
4

_]I

-2. 52‘1—' T T T R L 1 ! 1 T) |
Br 9%r 168~ 2%8n 35@r. 450~ 548 638n 728~ 8i8n nggﬁn
H

g

BROUP 1- V(3) V(&) V(5) V(1) V(2)

Figure 2.19
2220 Adder SPICE Output for the Sum Output

37

TEIR 1T 279F ORTE UED JAN B 17 36 50 108 (File. 2000)

S Bk~
i

- - -

2N

R

4. S~ i
4.80-

3 5@-

3 pe-

¢ Se-

2 BB~
[

1 50— |
L}
'

1 e~ : i
[}
l /

g 5e- !

! !

A : K !

- 80~ : — — : T T T !
Br 9B 180n 278n B2 . 458n 548n 630n 7228n Blén

i

BROUF 1 V(3) V(4 ¥i5) V(13 W)

Figure 2.20
2220 Adder SPICE Output for the Carry Output

38

Po) DI
ol c1p_5
2300
o cFO cF1 8
PSO 00

w PN

) i

COEFi y 4 DATAi 4psi §ci
o c%
| —| +— +—i
—t = =
:_J'
b [H ?I{ I
<

f'—}h

PSo) COEFoi 4 DATAo

Figure 2.21 (a), (b)

a) 2300 Multiplier Symbol
b) 2300 Multiplier Schematic

39

——

DATAL

o
1]

NN

vda

RN

7
é

N

R m‘%\

s s AT YT W AW
v R L AN

COEFif/ COEFo

o 3

GND

AN
R

N .

CoEEL

"B

PSo DATAO

Figure 2.21 (c)
(c) 2300 Multiplier Layout

40

2300sp)

(Fd

19

T JRN g 17 371

T

ne”

~an
-
-
-
-
llllll
tetceca
cm—e
bl T
rewecaea
e rcarecmcinanan

T

-——

S caman
lllllllll
llllllll
R L LT R
||||||||||||||

| i i 1

3 3 E F]
o =] — w
— Y] - (73
— — — —

' [} t .
G - Cu (L]
S o S o
[r - Lal

-1?71e~

3 80

-186u

2 50

‘247u'

e se

8.8

-262u-1

-¢ ee

~
-
—
>
[
.
~
—
Py
>0
~
(e8]
-~
>
w
=
—~
r~
—
>
~ L]
8~
> QL)
—
— >
oYW
Qo
0D D
&5
[y

Figure 2.22

2300 Multiplier SPICE Ouput for the Partial Sum Output

41

198 (F;l.-—??;%«_p.)

UED JAs g 172 37

it

TCTRCUTT 7%enst:

TIME

-~
——
A e ——
— e —— — —

e i e i . — —— — —— o —— Sy — — . —— S S

Saguigy 3
",’ L.
T ——— e ©
'.lllll"lllll"ul.lJ!l
: A
— = o
=
—_—— —
3
.2
e - e ———— i e e ——— — o
e R R i B g 2
- N
— [~~)
— e e e e —— e ——
2
' {]] [] { 1 ! i o
3 Ed 2 £} 3 F) 2 P) 3 By~
o3 - g [Vs] — mw — (7= — ~ o
— Y & wn ~ [-~] -— N < [t<}
. ‘ ‘ [0 ')) ')
g (=] [~ (-] [~ [~~] = [~~] [~] 2]
a v S bt =] I3l S 7] = o ®
o5 - L ~ L2} o [— — (-] P.;.

[}
PN |
-l
-
=1
”~
—
-
3
~
@
o
>
~
w
-
3
~
~
=
-3
~ 1]
[=NN }
D\)
> wy
o =
— =1
—cy
oo
oD
£
[

Figure 2.23
2300 Multiplier SPICE Output for the Carry Output

42

2.6 PERFORMANCE OF PIPELINED NINTH
ORDER FILTER

The previously discussed FIR program was used to generate coefficients for testing the
ninth order circuit. The basic test configuration is shown in Figure 2.26 where the highly
concurrent processor consists of four cascaded ninth order filter circuits. Testing revealed a
maximum clock frequency (sampling rate) of about 2 MHz. Using the previously
mentioned algorithm, optional filter coefficients were generated with the objective of
obtaining the most narrow bandpass filter with the four cascaded filters with at least 50 dB
stopband rejection and at most 1 dB ripple in the passband. This was accomplished by
specifying an ideal bandpass width of zero at the desired center frequency and iterating to
find the minimum transition width which would give each ninth order circuit a 10 db
stopband rejection with no more than .25 dB error at the center frequency. The response
of the four cascaded circuits should be the product of each individual transfer function.
The measured results for a typical center frequency which agree closely with the predicted
performance are shown in Figure 2.26.

2.6.1 Multirate Sampling

A second method of pipelining filters uses two different sampling frequencies. The first two
filters are clocked at one fourth the speed of the last two. The second set of two filters are
programmed with coefficients that result in a bandpass filter with a center frequency fsl'

The first set of two filters is programmed to have a bandpass filter with a center frequency

at any one of four multiples of the first; i.e., fsl'zfsl’sfsl’ or 4fs1. the first set of filters can

yield an improved narrow passband because of the slower clock, and the second set of filters
are then used to reject the unwanted aliased responses. Figure 2.27 shows the measured
results obtained using this method for four pipelined ninth order filters. Note that other
multiples for the slow clock could be used such as division by eight. This would give a
better narrow band filter for the aliased response of the slower clocked circuit, but would
require a sharper filter for the fast sampling frequency with poorer stopband rejection.

2.7 TASK I SUMMARY

A full custom FIR filter was designed and fabricated using NMOS technology. The result
was a very compact design with moderate sampling rates. The design is based on a slice
approach where the order of the filter can be extended by merely adding identical slices to
create a systolic array. Constraints on the size of chip which could be fabricated resulted
in a realization of ninth order filter for testing. The ninth order circuits were pipelined to
obtain narrowband filters with good response characteristics. A multirate sampling
technique was presented which significantly improves the narrowband filter obtained by
the pipelined set of four ninth order circuits. The multirate sampling technique is a simple
and practical method of improving the response of cascaded filters of arbitrary order.

43

SRR EEEEEBERER

(FE

0EEEEEREREREEEEEE
oEEEEErEREERERaS8

EERREERePREREBRERE®

Figure 2.24
Five Slice Chip

Select Center

" Frequency
Cilock and Coefficient
Control RAM
| ADC xin) Highly Concurrent y(n) DAC y(®)
Processor .
Figure 2.25

Test Circuit

44

[M= B o M - B R S O o sk X

¢}

_lo -

-20 -

I T] I
0.1 0.2 0.3 0.‘0

Normalized Frequency

Figure 2.26
Pipelined Filter Response

45

MO HZO>»X

HmwnZOoOMwumx

(dB)

=20

-30

=40

s./
I] | 1 .
0.1 0.2 0.3 0.4 0.5

Normalized Frequency

Figure 2.27
Multirate Sampling Response

46

Section 3

TASK II - PROGRAMMABLE DIGITAL FILTER USING
CMOS VLSI TECHNOLOGY

The previous section discussed the design and performance of a FIT filter using nMOS
technology. This task is an enhancement of that effort in that different digital design
techniques of adding and multiplying are implemented using CMOS technology. CMOS
has several advantages over nMOS. It has lower power dissipation and can have a higher
clock rate than nMOS technology. The disadvantage of CMOS is its larger size due to the
two types of transistors needed for each logic circuit [12]. However, the sizes of the
transistors are decreasing. The feature size used in this project is 3.0um, and the results
can be scaled to smaller sizes currently available.

3.1 ARCHITECTURE

The architectural techniques used for this programmable filter will be pipelining and
parallel processing. In using the pipelining techniques, the fastest clock rate of the system
is dependent on tge slowest stage of the pipe. In this project, each pipe is broken up into a
time rate of four carries. In other words, each stage is built so that the performance is
based on four carries.

The design technique used is a hierarchical approach. The circuit is broken down
into basic slices. The slices are further broken down into functional components which are
further broken down into basic cells. The basic cells are standard cells found in the cell
library which were obtained by the government sponsored MOS Implementation System
(MOSIS) [13]. By reproducing these cells, the components can be built. These components
are, then, interconnected together which creates the basic slices. By connecting the basic
slices, the final circuit results.

Three tests can be performed on the project before it is sent out for fabrication.
Vale, the computer-aided design tool used to develop the physical layout, contains a
command that checks for design rule errors [14]. Spice is a dynamic simulator which helps
determine voltage levels and rise, fall, and delay times [15{ Esim is a logic simulator
which tests the correctness of the circuit [16]. These simulations are used on the project
and are discussed in further detail in Section 3.3.

3.2 DESIGN APPROACH

3.2.1 Slice

The linear phase filter as discussed in Section 2 can be broken down into a reproducible
slice, shown in Figure 3.1. The sample x(n-1) from the previous slice is added to the
sample from the next slice. The sum is then multiplied by the weights h(m) to produce a
partial result p(n). By adding up all the partial results, the output y(n) is obtained.

47

(-1 }z-l <(nmim1)
K(neN=i+13 O B S

hC 53—

p(i)

Figure 3.1
Reproducible Slice

48

Because of the size of the slice (5,005um z 2,132um) and the size of the frame
(7,900um z 9,200um), only four slices fit in the frame. This means a single chip is a
seventh order filter.

3.2.2 Floorplan

Figure 3.2 shows the basic floorplan of the slice. In the first row, x(n—i) and x(n—{N-i-1))
samples are stored in the dual sample latch in two’s complement form. The samples are
passed on to the next and past slices and are also added together in the second row. No
overflow detection is provided. The data are then changed into one’s complement
preserving the sign. The sign is added to the one’s complement data to obtain a number in
two’s complement positive form. This is done because the matrix multiplier can only
handle positive numbers. The next 10 rows represent the multiplier and weighted
coefficient latches. The coefficients are also stored in the sign-magnitude form with the
sign preserved. The details of the multiplier are discussed later in section 3.2.3.4. The
next 5 rows represent the product changing back into the original two’s complement form.
Also, in this set of rows, the next slice is added to the current slice. These rows are shared
between every tow slices. The final latch, therefore, contains the output pQ + p(i+1).
Since the chip contains four slices, an extra adder and output latch are needed to produce
the final product.

The size of the samples is 8 bits wide. This was chosen for various reasons such as
the size of the slice, the ease of pipelining multiplication, and the availability of 8-bit A/D
and D/A chips. The seventh order filter is large enough to realize practical filtering by
cascading. There are various ways to cascade filters. One way is to cascade four chips to
produce a seventh order filter in which the final data of one chip is passed to the next chip.
This process is continued until the final data from the last chip is present. Another way to
cascade chips, and the one of interest here, is cascading chips together to produce a higher
g{der filter. For this section, four chips were cascaded together to produce a 31st order

ter.

Eight bits also help break the multiplication by inserting three pipes into the
multiplier. The first pipe is added after the first three carries. The next pipe is inserted
after the next four carries, and the final pipe is inserted to hold the final product.

The final reason 8 bits are chosen is the availability of commercial 8-bit A/D and
D/A chips that can run at the speed of the filter. The monolithic video A/D converter
form TRW is a 20-MegaSample Per Second (MSPS) full paralled A/D capable of
converting up to 7 MHz into 8-bit digital words. The video speed D/A converter also from
TRW is a 20 MSPS D/A capable of converting 8-, 9—, or 10-bit data words. Both chips
are compatible with TTL levels and can operate in two’s complement data forms.

3.23 Components and Cells

Looking at the floorplan, there are four functional components which make up the filter:
the latches, the carry—select adder, the exclusive OR complements, and the matrix
multiplier. Each of these components is broken down into four reproducible cells: the
latch cell, the full adder cell, the exclusive OR cell and the multiplier cell.

49

H | DS CoF
—.—_—J

"
S

h3-+3

Figure 3.2

Floorplan

50

3.2.3.1 Latch

The latch cell, Figure 3.3, is of the D-type flipflop which uses the master/slave approach.
The D input is clocked into the master when the clock is high. Then, when the clock goes
low, the data is recycled through the master and also moves into the slave where the
ovtput Q and Q are presented. On the next high clock, new data is inserted in the master
while the old data are recycling in the slave.

The one’s and two’s complement and the output latches are a single row data storing
circuit which is made up of arrayed latch cells. The pipe latch contains three single latches
which store the carry, sum, and multiplicand. The carry/sum latch contains two single
latches which store the final carry and sum from the multiplier (see Fig. 3.4). The dual
sample latch also contains two single latches which store the next and previous samples.
This circuit contains an added feature of a 2-to—1 multiplexer (see Fig. 3.5). Recall that in
the linear phase form, the last slice has only one sample and instead of passing the sample
to the next slice, it passes the sample back to the previous slice. The mux selects which
sample is to be passed to the previous slice (see Fig. 3.6). this circuitry permits one chip to
be cascaded with another chip to create a higher order filter. For example, if each chip is a
7th order filter, by cascading two chips, a 15th order filter is obtained. In this design, four
chips were cascaded together to obtain a 31st order filter. The last type of latch in the
filter is the coefficient latch which is one bit long and stores the two’s complement positive
weight for the slice.

3.2.3.2 Carry Select Adder

The adder cell, Figure 3.7, is a full adder that forms two outputs from three inputs. A and
B are the two input bits to be added and C is the carry from the previous adder. These
inputs produce the outputs S and CO, that is the sum and the next carry. This cell can be
arrayed to form the carry—select adder [18] shown in Figure 3.8. Bits a0-a3 are added to
bits b0-b3 at the same time bits a4—a7 and b4-b7 are added twice, once with the carry low
and once with the carry high. The carry from the fourth bit then selects the proper partial
sum s4-s7 to go along with the rest of the sum s0-s3. This break up of sums complies with
the four carry theory of trying to keep all the pipes as fast as possible.

3.2.3.3 Exclusive OR

The exclusive OR complement has natural characteristics that change the data, if
necessary, from one’s complement form to sign-magnitude form and from sign—-magnitude
form to one’s complement form. As mentioned before, this is done because the multiplier
can only handle positive numbers. The cell is shown in Figure 3.9 and is made up of two

g\IIAJ}.’II:ID’ gates and one ’AND’ gate. The inputs are A and B and they produce the result

51

C

CK

.______-..—i Do

>

V4

Figure 3.3
Latch Cell

52

e e

taten; latchy taics la‘.:?-.' le!c?z! i:fzh! letch! leteh
cell {cell |cell |ecell ecell |e¢ll ce!l | cell
one’'s compiement
tun's coanlament
} lat
tatch| latch| latch| latch| Lotch] Llatch] Laich| Latch latch| tatch| latch| latch| tetch| latch] latch ol:h
Tl {eell [call |cell |cell | cell {cell | cell cell {cell [cell {oel! |oell | oet!]oell | oo
ce
lateh) laten] Laten| Latch| Latch] Lateh] 1ater} Latch tateh] Latch| lateh] tatch] tatch] latch] Lateh] Latch
- 104, o H
' 1 11 i
cell extt |cell fcell |eett |ouli |celi jceii ce'l [cell [cell |[ecall [cell |call {om ca
leteh: Lateh| taten| lateh lateh| tatch] Llateh| [ateh
cerry/sun cell [cell [ceil {call [ceil [cell [oell |l
plpe
Figure 3.4

Latch Components

53

latch latch lateh tatch tetch latch leteh {etch
cell cell cell call cell cell cell cell
[1T} 9 nux nUX nux nuUx nux nUx X
latch letech lateh laich laten laten teteh latch
cail ceil cal! ceil ceil ceil catl cell
L ! ' — L
Figure 3.5
Dual Sample Latch
(- - - =" | |-t T T =" | (=TT T T ==
| |
__IE ooe m l [[XX ' l [ece l
| | | | |
| | | | |
! | | I |
| [! | |
| I I [[
| I | | |
| I I -
[[([|
I [| | |
I ehip | ' ' chip 2 l ' chip $
‘ | ! I !
Figure 3.6
Chip Cascading
54

-« C0

Figure 3.7
Adder Cell

55

gb-a27 ba-b7 a2-83 b@-bl’a_
U U
- I |
i i@:l et
| j

84-57 b4-b?
|

\l/ N/

WV
cl-c? sB-s3

Figure 3.8
Carry-Select Adder

56

FRe
| ' —D&—qom

[-

Figure 3.9
Exclusive OR Cell

57

3.2.3.4 Multiplier
First, it would be beneficial to go over how bits are multiplied.

al a0
X bl b0

alb0 aGbo
albl a0bl

p2 pl po

b0 is multiplied with a0 to produce a0b0, then b0 X al = alb0, and so on. Then, by
adding each partial product of each column together along with the carry from the previous
column, the product is obtained. In this multiplier, each column is added up at the same
time and whenever there is a carry produced by a two’s column, it is added to the next
highest two’s column on the next add. A block diagram of the multiplier cell [18] can be
seen in Figure 3.10. It has four inputs and produces two outputs. Multiplying inputs a(i)
by b(j) to produce a(i)b(j) can be done easily by using an ’AND’ gate. This result is then
added to the partial sum, psi, and to the carry, ci, from the previous column which in turn
produces the next carry, ci+1, for the next two’s column and a partial sum, psi+1, for the
next multiplier cell. The logic layout of the multiplier cell (Figure 3.11) is composed of the
adder cell and the ’AND’ gate. A better way to visualize the multiplier is to combine this
cell into an example of a 4-bit X 4-bit multiplier (see Fig. 3.12). Notice, p0—p3 fall out
and p4-p7 are made by adding the sums and carries. Once again, the multiplication is
split by pipes to keep the timing to four carries. Also, a product of 14 bits is produced but
in o:'ldler tohsustain the same output length as input length, the product is rounded to 7 bits
word length.

3.3 SIMULATIONS

3.3.1 Spice

The following graph (Fig. 3.13) is an example of a spice simulation. This particular graph
shows the delay for a one bit full adder. An estimated load of 1.5 pF was added to the sum
and carry out to simulate the input capacitance of the next event. The delay time is
calculated by subtracting the time when the input V(a) reaches 2.5 volts from the time
when the carry out, V(cout), reaches 2.5 volts. In this case, the delay time is

47.484ns — 42.478ns = 5.006ns

The cells have different loading capacitances because each looks into a different input
capacitance of the next event. These loading capacitances are for worst case situations.
Spice is used to find the total time to move data from one event to the next. The
longest delay of a pipe stage is determined by adding up all the delay times of each event in
that stage. In the slice, the longest total delay is the addition of carry and sum produced
by the multiplier and the conversion to one’s complement. The clock rate is found by the

58

ps! ci ot
b IR
' psi+l
ci+l \
Figure 3.10
Multiplier Block Diagram
C! o “’-‘

o oo
D1 -

]

Figure 3.11
Multiplier Cell

59

b

bl

b2

b3

83

=Y 8l ab
alhf 3250
pe i ct
rB
l 8idbl
rsi+]
Cl+l pl

NN N

! LA Y
b pS p4
Figure 3.12

4-bit X 4-bit Multiplier

60

’

STRCOIY: ROD1 ORTE: WED FEB 1] 11:32:15 1567 (File: ecdl)

s N [
o / NI
.51 ' / ' \/
A X
23t ‘l}{vﬂ).\ﬁ%n = 71‘ ¥1.4194 \
o/ SEEAN

wl St
0 —

0.49+— 7 . <
-a'eslg.en Ml'ln 4250 438 45.2n 46.5n 47.9n 49.2n 50.6n 51.Gn 3. 3a

TIHE |
GROUP 1: V(8) _ VW(b)__ Vlein) V(eout) V(sum) .

Figure 3.13

Spice Simulation

61

following delay times:
t;d; of latch = 6.44ns

d
d

t
t

of adder = 5.006ns
of exor = 4.33ns

By adding up the delays of each event, the total delay time is:

total delay = 6.44ns + (5.006ns * 4) + (4.33ns * 2)
= 35.124ns

The delay of the adder is multiplied by four because each carry-select adder has four
carries and the delay of the exclusive OR is multiplied by two because the data travels
through two exclusive OR gates. The clock rate is established by dividing the inverse of
the delay time by two for a square wave.

clock rate = (1/total delay)/2
= (1/35.124ns)/2
= 14.23 MHz

Therefore, the chip should be able to clock at 14 MHz which is fast enough to handle the 0
to 3 MHz frequency range specification.

3.3.2 Esim

Esim simulations were performed on all cells, all components, and the complete slice. This
helped build confidence that the circuit logically works. However, due to the large size of
the circuit, a complete Esim study of the entire circuit was not performed because of
memory problems on the Metheus, the system used to create the physical layout.
An example of an Esim simulation on a slice is shown in Figure 3.14. A0-AT are the
inputs from the next slice and they have a value of 25. d0—d7 with a value of 44 are the
inputs from the previous slice, and b0-b7 are the coefficients with a value of -13. The next
four inputs are the control lines. ckl clocks the slice and ck2 clocks in the coefficients.
The sel and seln control the 2-to—1 multiplexer on the dual sample latch. It is set as
being the last slice in the filter, that is, d0—d7 is being sent back to the previous slice. The
final control line is the load signal. When this line is high, the coefficients are loading into
their latch on the next ck2 high pulse. Notice that the coefficients b0-b7 are changing but
the final product p0—p7 is not. This is due to the load signal being low in the rest of the
testing. the rest of the Esim simulations are the outputs corresponding to the inputs.
10-17 represent the signal moving to the previous chip. These data are the same as the .
d0—d7 inputs which shows that the mux works as it is intended. r0-r7 are the outputs
which would go to the next slice if there was one. a+do-a+d7 are check points that make
sure the two sample inputs are added together correctly. piO—pi7 represent the products of .
the multiplier before they are changed gack to one’s complement. Finally, p0—p7 is the

one’s complement product. In this case, the number is changed because the coefficient is
negative. The two’s complement product is not tested here because the next two stages of
the floorplan are shared by every two slices.

w123

-

oo L B X ok TUVOVLO0.00000000
O® 50 00 96 06 60 60 55 58 00 00 96 S0 B4 00 e o0 o0
— vy vt gt O vy S et vt vt ot C OO0
=y g gy —y gy -y v punf pr{ g - v
—t oy oy vt ot) vt Ll] -
—t o gyt O vy vt gt gy vt) vt
— e b ot g) vemy vy gamf gy g OO
— — vt O vt v g ey gy vt) vt
—(—y Py vt gt O vt vy gy yag -0
— — ot gt O v vy gy gy g vt O vt
- ey =y gy O vy gy | y— -0
o oy v gt O v e gt gt v vt) vt
Wl vy gy gyt O vy v g et g OO
— —t et O vy P eyt g) v
S e L vt et O v — e ot gt —_—0
Q gy) —t et & vt — g vt Y
{— w— gy v ot O vt vty ey ey OO
=3 o= vt v =t O v vt vt C vt —
| = - o vt ot O vy vt et O et o
91 pnnf gy ey guaf —y ey goy o y—
— w— vy vy gud) vy vt vt O vt o
acla p— oy —(g — v — —
et vy ot et C vy gyt C) vt o
”1 =t vt ot) vt vt vt C vt v—
— o oy v gt O v v ot (D et (]
.wl vy v gt O vy g gt () et —
o — vy gt O vy vt et O v (]
— — v =t gt O vt vt O vt =y - v
) vyt vt gt C v vt O vt vt ™
| odam et ey v -— - ey o =y
O = g gy g gt D v vy) vt ey -
O\ vt e v v g O vy =) vt vy —
) —r— vt O vt =) vt vt -_O
[] — v gt D vy vt O vty v—
— = vt vt O vt) vt vt -
ml oy ymat vt et) vt vont O vt vt —
o) v ey vt gt € vy vy O vty -
L] —y yoy e gy — v—y o gy p—
- — e vt et) vt et) et g -

— y— ey vt gt — — 4 gy — P
— et v vt O v =t) =t vy -
— -y vyt O v) vt vt —
— —t vt pd O v vt O vt =t -
- o vy venn yot O v vt) vt gt g vt

AR AAAAARARARA A

AA

>000:sel

111111111111111111111111111111111111:seln

1
1100000000000000000000000000000000000:10ad

p—y vy

>xx111:15

>xx000:16
>xx000:17
>xx000:r0
>xx000:r1

‘2
r3

11
2 11l11lll111lllllllllllllllllllllllllllll.r4
xx000:

>xx111:15

>xx000:r6
>xx000:r7

>xx1
>xx1

Figure 3.14

Esim Simulation

63

>xxxxxx1111111111111111111111111111111111111:a+d0
>xxxxxx0000000000000000000000000000000000000:a+d1
>xxxxxxllllllllllllllllllllllllllllllllllllla++g§
0000000000000000000000000000000000000:
>xxxxxx0000000000000000000000000000000000000:a+d4
>xxxxxx0000000000000000000000000000000000000:a+d>5
>xxxxxx1111111111111111111111111111111111111: aigg
0000000000000000000000000000000000000:

S>XXXXXX
>xxxxxxxxxx111

111111111111111111111111111111:pi0
>xxxxxxxxxx111111111111111111111111111111111:pil
>xxxxxxxxxx111111111111111111111111111111111:p 2

>xxxxxxxxxx000000000000000000000000000000000: pl

>xxxxxxxxxx000000000000000000000000000000000:pi4
>xxxxxxxxxx000000000000000000000000000000000:pi5
>xxxxxxxxxx000000000000000000000000000000000:pi6
>xxxxxxxxxx000000000000000000000000000000000:pi7
>xxxxxxxxxxxx0000000000000000000000000000000:p0

SXXXXXXXXXxxx0000000000000000000000000000000:p2
>xxxxxxxxxxxx1111111111111111111111111111111:p3
>xxxxxxxxxxxx1111111111111111111111111111111:p4
>xxxxxxxxxxxx1111111111111111111111111111111:p5
>xxxxxxxxxxxx1111111111111111111111111111111:p6
S>xxxxxxxxxxxx1111111111111111111111111111111:p7
4899 transistors, 2673 nodes (79 pulled up)

a= 25 00011001
+ d= 4 + 00101100
a+td= 69 01000101
x b= -13 x10001101

pi= 897 00000111

p =-897 11111

Figure 3.14 (continued)

Esim Simulation

64

3.4

3.4.1

CIRCUITRY

7th Order Chip

Figure 3.15 is a picture of the seventh order VLSI chip. Recursiveness and regularity of the
hierarchical approach can be seen throughout the whole picture. The total size is
7,900um X 9,200um and contains 23,214 transistors.
3-micron rule set.
The pin numbers of the seventh order chip are as follows:

pin
pin
pin
pin
pin
pin
pin

W00 ~JO O EWN =

Vdd substrate connection
product 2

product 1

product 0

coefficient clock 4

nc

clock

Ground

vdd

test point sign—coefficient
test point coefficient 6
test point coefficient$
Load

test point coefficient 4
test point coefficient 3
next output

next output 6

next output 5

next output 4

next output 3

next output 2

next output 1

next output 0

select

.next input 0

next input 1
next input 2
next input 3
next input 4
next input 5
next input 6
next input 7
previous input 0
previous input 1
previous input 2
previous input 3
previous input 4
previous input §
previous input 6
previous input 7
previous output 0
previous output 1

65

The chip is designed using the

=, SRS

e S oy T T

Ll

lé [Fheit

gb_m RERIRE

e
PRA!

!
o]

?

Figure 3.15

Physical Layout

66

pin 43 - previous output 2
pin 44 - previous output 3
pin 45 - previous output 4
pin 46 - previous output 5
pin 47 - previous output 6
pin 48 - previous output 7
pin 49 - coefficient 0

pin 50 - coefficient 1

pin 51 - coefficient 2

pin 52 - coefficient 3

pin 53 — coefficient 4

pin 54 - coefficient 5

pin 55 ~ coefficient 6

pin 56 - coefficient 7

pin 57 — coefficient clock 1
pin 58 - coefficient clock 2
pin 59 - coefficient clock 3
pin 60 - product 7

pin 61 - product 6

pin 62 - product 5

pin 63 - product 4

pin 64 - product 3

Something to notice in the picture is that the output pads have more detailed
circuitry than the input pads. This is because the output pads have drivers in them to
boost the output signals. Also, the last six rows of cells both on the right and left side add
two slices together, and the sum of each of these is added together by the three rows in the
middle to produce the final result yén). Finally, there are three lines of metal on the right
side which are used for Vdd, Ground, and clock line (from right to left).

34.2 Filter Board and A/D D/A Board

The <eventh order chips are capable of filtering signals by themselves. However, to
improve the responses, a filter board which cascades four chips toiether was designed to
implement a 31st order filter. The digital input comes through a bus connector which is
hooked up to the A/D D/A board. The data are then processed by the filtering chips, and
the final result of each ot the four chips is added together by TTL adders. This addition is
also - ipelined to keep up with the high performance clock rate. The final outcome is sent
ba:}: through the bus connector to the A/D D/A board where it is changed back to an
analcy signal.

There is another bus connection on the filter board which is hooked up to the
MC6230 parallel interface. The 68000 board aids in loading the coefficients [19].

3.5 PERFORMANCE EVALUATION OF 31ST ORDER
FILTER

As previously discussed, the pipelined 31st Order Filter architecture should permit a clock
frequency of 14 MHz and with the proper filter coefficients should result in narrowband
filters with stopband rejection of 40 dB. Two problems surfaced during testing which

67

inhibited full performance. The first problem involved the clock input circuitry. Testing
revealed that the clock input line could be driven at a maximum rate of 1.5 MHz.
Investigation of the clock input circuitry showed that all the clock lines internal to the chip
were being driven through one unbuffered input pad which had a protection resistance of
about 5K. The resistance, in conjunction with the capacitance of the on chip clock circuits
(90pF), produces an RC time constant that limits the clock speed. A simple design using
buffers would eliminate this problem. A second catastrophic problem was caused by
skewing of the clock signal between the sign bits of the slices and the circuitry which adds
the results of the slices. That is, the clock signal arrives at a slightly different time due to
the different distance traveled from the input pad and results in a race condition when the
input data crosses zero and switches signs. Again, this could be fixed with a buffer delay in
the sign (it1) bit circuitry. These problems prevented complete testing of the filter.
Testing at slower clock speeds with input data all the same sign indicated complete
functionally otherwise.

3.6 TASK II SUMMARY

Task II resulted in the design of a pipelined processor which could be clocked in excess of
10MHz with minor corrections to the design. The 31st order filter circuit results in a
systolic array of 16 processors performing 440 million operations per second (MOPS). The
processor design incorporates an improved parallel architecture for the adder and multiplier
circuits when compared to Task I. The fabrication was done using a 3y CMOS process.
Extrapolating the results to a 1u process would indicate the same design would permit
iCiIIOCk speeds in excess of 30 MHz and approximately one-ninth the area for a 7th order
ter circuit.

68

—_—

Section 4

TASKIII - A HIGH PERFORMANCE VECTOR PROCESSOR
USING RESIDUE NUMBER THEORY, PIPELINING, AND
VLSI TECHNOLOGY

Many algorithms and procedures have been used to increase the speed of arithmetic
operations in digital computers. This section presents the use of an older algorithm
Residue Number Theory) combined with the use of newer technology, namely VLSI (Very
arge Scale Integration). The design of a 16x16 bit vector processor is used as a design
example in a general treatment of the implementation of processors using this technique.

4.1 THEORY AND NOTATION

The basic function behind Residue Number Theory is a simple one _}22]. We take an
arbitrary integer (positive or negative) which we will represent by b. This integer is then
divided by another integer, which we will restrict to be positive for the purposes of this
discussion. We will represent this integer by n. We define the residue representation
Modulo n as the positive remainder of the division of b by n. The notation widely used in
the literature is as follows:

R = (B)MOD(n)

where R is the positive integer remainder of the division of b by n.
One easy way to find R given b and n is to divide b by n, truncate the fractional part
of the quotient, and find R by the following equation:

R=b-qn

wherte;,e q is the truncated quotient of b and n, which is chosen such that R is a positive
number.

The thrust behind a Residue Number System (RNS) is a tricky puzzle which may be
illustrated by the following example:

If we know that the residue representation of an unknown number u is 4 with respect
to modulus 5, 6 with respect to modulus 7, and 2 with respect to modulus 3, what is
the unknown number?

The answer of this puzzle is actually an infinite set of values separated in magnitude by

. 5x7x3, the product of the respective moduli. If we restrict u to be less than the product of
the moduli, then every u in this set of values has a unique modular representation in the
chosen modular system. This means that every u in this set will have a unique
representation if the modular system representation of u is chosen to be an n-tuple with
each value defined to be the modular value of u with respect to each modulus in the
system. More compactly,

(Rl,Rg, cee, Rk) = (u)MOD(ni), i=12, .-+, k.

69

As an aside, the structure of this puzzle is the format of the original CRT made nearly
2,000 years ago [20].

Recall that u is restricted to be less than the product of all the moduli in the system.
Under ordinary circumstances, this restriction on u severely restricts the use of the residue
number system in mathematical calculation. However, in digital computers, the restriction
of the maximum magnitude of u is a natural consequence of finite word widths and poses
no theoretical problems which would prevent the use of a Residue Number System (RNS)
in digital processors.

The dynamic range of an RNS where each representation of u in RNS format maps
back into a unique u is simply the product of the moduli. This fact does not hold in
general, and is restricted to moduli chosen so that they are pairwise relatively prime. This
restriction means that if we take all possible sets of the moduli two at a time, each pair
only has unity as a common factor. Therefore, if we have a specific word size desired in a
digital processor, we choose the moduli so that the dynamic range of these moduli is large
enough to represent the largest number possible in the system. Other considerations enter
into the selection of the moduli and will be discussed in later sections of this discussion.

What we are ultimately discussing here is a different representation for numerical
data. One common representation for numerical data, the binary number system, is a
fixed-radix system. This means that the representation of numbers depends upon a
positional notation and a fixed base. A mixed-radix system is similar to a fixed~radix
system, with each number depending on a positional notation, but with each position in the
number dependent a unique base. The residue representation of a number is a radix-less
representation which has an arbitrarily—chosen but fixed positional representation. One
way to see the difference between a fixed or mixed-radix system and a radix-less system is
the information conveyed in the format. A casual inspection of a number in any radix
format usually yields an exact idea of how its magnitude compares with another number in
the same format. However, numbers in a radix-less format cannot be compared in this
fashion without a conversion of this number to some sort of radix system. This is one
limitation to an RNS. This and other limitations to an RNS will be discussed in detail in
later sections.

The choice of representation of numbers in a digital computer has a huge effect on
the hardware realization of the processor. For example, if we are working on two different
processors which will use binary format for numerical data with one processor using 2’s
compliment sign notation and the other using sif%n-magnitude representation for signed
numbers, an adder system in each will be vastly different in each processor.

The consequence of using an RNS in a processor is a paralleling of the hardware used
to perform arithmetic. The equation below defines the set of possible arithmetic operations
while a number is in RNS format [23]:

IF (cy,c3, +++ ,¢5) = byand (d;,dy, - - ,dy) then,
bjobz = (cjody. cz0dy, - -+ , cqodn) where 0 is +, x, or —.

A close inspection of this equation yields some useful properties and consequences of an
RNS processor:

1) We have partitioned arithmetic into n parallel, independent, carry~free pieces.

2) Since the width of each part in the n—tuple of the RNS representation of u can
be represented in binary by numbers much smaller in width than the original
binary representation of u, arithmetic can be performed far faster while the
number is in RNS format since the delay for arithmetic operations is
proportional to the width of the operands.

70

3) The hardware used is the same to implement arithmetic operations independent
of the sign of the numbers involved.

From the above, it is apparent that the main advantage of an RNS system in a
digital processor is speed. It will be shown later that the delay for multiplication, which
traditionally takes far longer than addition or subtraction in a digital processor using
binary data, is roughly the same as for addition in an RNS processor. These advantages
can be extremely important to the designer of a high—speed processor needing these
qualities.

4.1.1 RNS Processor Research

Early attempts were made to construct RNS processors in the 1960’s. These attempts,
although successful, were constrained by the digital hardware technology of the time [21].
Researchers into the 1970’s enjoyed a better technological advantage, but the costs of
integrating custom hardware were very prohibitive for research to progress rapidly. Most
advances in the 1970’s concerned algorithm manipulation in order to use off-the—shelf
integrated circuits and programmable logic devices with enhanced performance [23] [25].
These circuits tended to be very large and difficult to troubleshoot, and their performance
was not as good as other binary processors of the time.

With the advent of VLSI design in the late 1970’s, the hardware realization of RNS
processors finally became practical [28]. However, costs were still very high at that time,
so only well-endowed institutions could afford to constructprototypes. Research centered
on algorithm manipulation, with the needs of VLSI technology in mind. Most hardware
actually constructed consisted of only functional elements such as adders, with very few
fully-functional processors constructed. Hughes constructed an RNS processor chip set in
NMOS technology in 1979 with a dynamic range of 18 bits [33]. To date, most functional
processor efforts can be categorized by word lengths of 16 bits or less, for use in specific
filter architectures.

It is believed that the processor described in this section is the first fully functional
32-bit RNS processor that has been integrated onto a single chip. To achieve this, some
unique hardware construction methods were employed. These methods will be discussed in
later sections. This processor is not a stripped—down minimally functional one; it contains
many other features, including the ability to handle signed of unsigned numbers, which is
another unique achievement.

42 PROCESSOR DESIGN

421 Choice of Moduli

The choice of moduli in an RNS is an important one and is one of the biggest influences on
system performance. Many different choices can be made, but some m%egs specific for the
:l/It‘S'Il implementation of an RNS processor can be generally made and will be discussed in
etail.
In the specification of a processor, the desired width of the output word is a basic
quality of the processor. If this is known, then the dynamic range of the residue system is
specified so that the size and number of the moduli in the RNS can be chosen so that this

71

dynamic range is met. This does not eliminate many choices of systems of moduli, since an
infinite combination of pairwise relatively prime numbers can meet this dynamic range
specification.

The VLSI implementation of basic cells used in an RNS processor are generally
composed of PLA’siProgrammable Logic Arrays) [29] [30]. If Sreat speed is desired inside
the processor, the choice of smaller moduli will decrease the delay time through each of
these cells. The modular representation of a number is actually an n-tuple of binary
numbers in an RNS processor. Since each element of the n—tuple is always less than the
respective modulus, the choice of smaller moduli will decrease the width of the elements in
the n—tuple. Since the delay through a PLA is proportional to its size, and the size is
proportional to the number of product terms, reducing the field width of each element in
the RNS representation of numbers will enhance the speed of the processor.

Another consideration related to the width of the moduli is the desire in VLSI for all
the basic cells in a design to have the same size and shape. Therefore, we want the width
of the moduli in an RNS to be small and have the same width, for a regular, easily-planned
layout which will have fast delay times. However, this may not be possible for systems
with a large dynamic range, since it may be impossible for a pairwise relatively prime
residue system to have all its elements the same width.

The last general requirement of the system of moduli chosen is associated with the
conversion of the RNS number to binary. It turns out that the multiplicative inverse
(discussed later) does not exist for every modulus in the RNS in general [21]. The existence
of the multiplicative inverse is guaranteed if each modulus in the system is a prime
number. The existence of the multiplicative inverse is required for the conversion from
RNS to binary, so the choice of nothing but prime numbers will assure that the processor
will avoid this existence problem.

In summary, when selecting the moduli in a RNS, choose the smallest-width prime
numbers which will give you the desired dynamic range of the processor. This selection
process should give numbers which are close to the same width for regularity in the lay out.
If nothing but prime numbers are chosen, the system is automatically pairwise relatively
prime.

For the processor described in this thesis, the desired dynamic range is 32 bits. This
processor, termed the PRVP (Pipelined Residue Vector Processor) for purposes of
discussion, performs a multiply-accumulate on 16 bit operands with 32 bits of accuracy.
Using the guidelines just discussed, the following moduli were chosen for this processor:

(31,29,23,19,17,13,11,7)

The positions of each of the moduli in the n—tuple will be consistent with this positional
notation throughout this thesis.

Notice that the width of each element in the n—tuple varies from five to three bits.
This is due to the large dynamic range of the required system. Prime numbers with field
widths of six bits could have been chosen so that the width of each field would be the same.
However, this system would be slower than the one chosen.

The inclusion of an additional modulus could be implemented to facilitate sign
detection while the number is in RNS format. All operations performed in the processor
would be also performed on this additional modulus also, which is termed the redundant
modulus. A check to see if this redundant modulus is even or odd can, under certain
circumstances, detect the sign of an RNS number. Overflow can also be detected in this
manner also, under certain circumstances. Since neither of these features was required for
the PRVP, they were not included in the design. Since this technique is highly dependent
on :ih?' moduli system, the desire to detect sign or overflow can govern the selection of the
moduli.

72

422 Conversion Hardware
The magnitude of a binary number is represented by the following formula:
M = 28b, + --- + 22by + 2by + by

Where M is the magnitude and the b’s are the binary number expressed from the most
significant position to the least significant position. Since binary numbers are represented
in this form, the modular representation of this number can be obtained by the following
formula:

(x)mod(m;) = (27)mod(m;)byn + --- + (2?)mod(m;)ba + (2)mod(m;)b; + (bo)mod(m;)

Where x is the modular form of the binary number (b) [21). The implications of this
formula are very important to the designer. As mentioned earlier, much of the hardware in
an RNS processor can be composed of PLA’s. This means that for every bit in b, we
simply calculate the modular representation of the positional multiplier and perform a
logical AND with the bit at the same time using a PLA and then add each output of the
PLA’s up with modulo adders. Of course, this approach would be very slow with many
residue adder delays added sequentially. We could group some of the input field together
and perform the table look—up on more than one bit of b. Since the delay through a PLA is
proportional to the number of its product terms, we could balance the delays through the
look-up stage and the adder stages in order to optimize the speed of the process. In
particular, we would want to split b into ¢ pieces, with ¢ a power of two so that the
number of residue adders used is minimized with the choice of ¢ dependent on the resulting
delays through the look—up and adder stages. Therefore, finding c is an iterative, trial an
error process which depends on the width of each field of b and the width of the resultant
residue representation of b.

The hardware realization of a residue adder will be discussed now. We could, of
course, simply comstruct a PLA with inputs with w the width of the residue field.
However, we could use a hybrid structure, where we use binary adders in the traditional
way and then use an input PLA to scale the answer back to the proper residue
representation [30]. We need the PLA, because in general the output of the adder may be
larger than the modulus of that varticular piece an§ must be converted back to the correct
residue representation. The advantage of the hybrid approach is that it may be smaller
than the direct PLA look—up approach without sacrificing much speed. Another advantage
is that the PLA can do more than one thing, such as correct the output of the binary
adders and adjust the sign of the number (discussed below). If a nonzero power of 2 is
chosen for one of the moduli, we can eliminate the PLA look-up altogether. However, a
power of 2 is not a prime number, and may cause problems in the convert-back process
were the multiplicative inverse is required.

The PRVP has input operands of 16 bits. This input may be in either unsigned or
2’s compliment format. After a few design iterations, the approach of Fig. 4.1 was used.
The 16 bit number was broken up into two 8 bit fields and run through the PLA look—up
tables. The output of these two tables was added together using a traditional ripple—carry
adder structure. The output of the adder was adjusted by a PLA connected to the output.
This PLA also converted the residue representation of b to a signed one if it was desired.

This sign conversion works as follows: 2’s compliment format can be converted to a
decimal number by subtracting from the magnitude of the binary number if the most

73

significant bit is set and the word is k bits wide. Due to the distributed nature of the
conversion from binary to residue, we can convert the number to residue regardless of the
sign, and simply add the following to the number at the end of the process:

(~2k)mod(m;)

Therefore, the PLA at the end of the hybrid adder can scale the number back to the correct
residue representation and correct the sign of the number if that format is what is desired.

If we took the strictly look—up approach for the conversion to residue representation,
we would need to add an additional PLA at the end of the process to accomplish sign
compensation. However, if a hybrid residue adder is used instead, we can do the sign
compensation at a cost of one additional input term in the PLA portion of the adder. This
will be generally worth the additional space required for the PLA.

423 PLA’s

We have been discussing PLA’s for some time now without going into detail how they are
constructed. MAGIC (layout editor) [32] has some associated tools with it which
automatically generates the layout of PLA’s given a truth-table description of the input
and output functions. Table 4.1 gives an example of a truth table with five inputs and five
outputs. The statements proceeded by a. in the description are directives for both the PLA
generating program MPLA and the logic minimization program ESPRESSO [3%]. The .1
and .O directives tells each program how many inputs and outputs there are. The .phase
statement indicates either true (1) or complimented (0) outputs for each of the output
lines. Therefore, if you want the first output to have the inverse of what the truth table
description indicates, we would change the first one to zero in the phase statement. This
makes it handy to buffer the outputs of the PLA only using a single inverter.

ESPRESSO is run with this file (Table 4.1) as its input. ESPRESSO then minimizes
the number of minterms required to implement each of the outputs. Each minterm
requires an additional row in the PLA; therefore we are minimizing the size of the resultant
PLA. It is not uncommon for ESPRESSO to reduce the number o% minterms by half.

If the designer has outputs which are not required for a given input term,
ESPRESSO can be used to further reduce the number of minterms. Instead of specifying a
logic 1 or a logic 0 for this undesired output, a — (don’t care) can be specified which will be
used by ESPRESSO to its advantage. By an intelligent choice of inputs and outputs, a
minimum version of a desired logical function can be realized without too much effort.

The output of the ESPRESSO program is a PLA description. This description is
used by MPLA [32] to automatically generate the lay out of the PLA, which is based on a
model stored in the file system.

The use of these programs can greatly speed the design of a VLSI circuit. The PLA
descriptions can be automatically generated by custom software. This is easy when there is
a mathematical relationship between the inputs and the outputs of the PLA, which is the
case in an RNS processor. This will be discussed in greater detail shortly.

42.4 Conversion Hardware Details

After describing the design process for PLA’s, we can now discuss the hardware in much
more detail for the conversion to residue.

74

Table 4.1
ESPRESSO Input File

i85
.0 5
.p 32
.phase 11111
.type fr
00000 00000
00001 10010
00010 01101
00011 --=---
00100 01111
00101 10010
00110 00011
00111 10101
01000 11111
01001 00000
01010 ~----1
01011 00111
01100 10101
01101 00110
01110 11000
01111 --=---
10000 11000
10001 11010
10010 10111
10011 00100
10100 -==--
10101 01110
10110 00000
10111 -1---
11000 11010
11001 01100
11010 10001
11011 11111
11100 10001
11101 11100
11110 10011
11111 10011
.e

75

A version of Fig. 4.1 must be constructed for each moduli in the system. This means
that for the PRVP, we must construct two PLA’s per moduli, or a total of 16 PLA’s.
Since each of these PLA’s have the same number of inputs and we wish to generate outputs
for every possible minterm, at first glance we may conclude that each of these PLA’s will
be roughly the same size. However, the logical minimization ESPRESSO performs is not
uniform for different moduli, and the sizes of the PLA’s varied about thirty percent. As
VLSI designers prefer to group functional blocks together in rows so that they may share
common inputs, this approach was used. However, laying the PLA’s out in rows would
waste some space since some of the PLA’s are smaller than other PLA’s.

Originally, the use look-up adders in the converter was planned since these adders
will be used elsewhere, which would cut design time. However, this approach was
abandoned because the space wasted by this row of PLA’s was just large enough to fit a set
of hybrid adders into the space. Fig. 4.2 shows the modulo—29 stage of the conversion
process. Fig. 4.3 shows the entire PRVP converter with the PLA’s and the adders
highlighted. Fig. 4.3 shows that, the modulo-29 stage contains the largest PLA’s and also
has a 5 bit ripple carry adder in the hybrid stage and hence is the slowest part of the
conversion process. At the bottom of the highlighted area, we can see the sign and scaling
PLA’s for each moduli.

The Microsoft QuickBASIC programs used to generate the conversion look-up tables
and the sign and scaling tables are contained [36].

425 Topology of the PRVP

The conversion hardware just discussed is very generic for many types of RNS systems.
The next piece of hardware designed, the arithmetic unit (AU), is more specific for each
application.

The specification called for a processor which could perform a multiply-accumulation
operation at a very high speed with 16-bit operands and 32 bits of output accuracy. This
processor was specified to interface with the SF1 (Stack Frame 1) Reduced Instruction Set
Computer (RISC) on the high—speed stack bus. The SF1 is a processor designed using
VLSI technology at Wright State University for high-speed 32-bit digital processin
applications in a real-iime avionics environment [22&. processor such as the PRVP coulg
provide a vector—processing capability which would be a natural extension of the SF1’s
ALU operations.

A block diagram of the PRVP is shown in Fig. 4.4. This block diagram includes the
instruction set for the PRVP which are received via the Chip Select Bus (instruction bus
of the stack bus. From a study of Fig. 4.4, the architecture of the PRVP is pipelined an
is very similar at this level of abstraction to a conventional binary processor.

Operands come into the PRVP and go through the binary to RNS conversion process via
the stack data bus, which is actually 32 bits wide. The operand is latched into either A
register or B register in signed or unsigned format (depending on a bit in the status
register). This level constitutes one pipe. If the A register is loaded, it is implied that

the product of the contents of the A register and the B register are added with the C
register, which is the second pipe level. Thus, the C register keeps a running tally of the
multiplications performed on the contents of A and B. When it is desired to know the
value of C, the PRVP ca~ "e issued an instruction which will convert C into the correct
binary format (signed o unsigned). At the end of this conversion process, the PRVP
either generates an interrupt or sets a bit in the status register which tells the SF1 that the
desired result is ready. While the PRVP is performing a conversion from RNS to binary, it
can still perform other operations in the instruction set, such as loading new operands into
the chip, clearing the C register, etc. Thus, a very high throughput can be achieved with
the PRVP with an intelligent ordering of the instructions.

76

Bits 0.7 Bits 8-15

PLA PLA

Binary
Ripple
Adder

w+1

Sign Adjust? w+1 PLA

. I

Mod(m) output

Figure 4.1
Block Diagram of the Binary to RNS Hardware

7

(\\\\\\\\\\\\\\\\\\\‘“

s;.
N
N
\ -

N \
\\\\\\\\\\\\\\\\\\\\\\\

Figure 4.2
Mod-29 PLA’s

78

1

19119AU0) SNY 03 Areulg aq3 Jo Jnoker

¢y arndig
PR S AT S Sy - e ey S [RRY (IR ..\ “ \\\\\\\\\\\\\\\\\\\\\\\\\\\\
4 . = - 77 RN <
A 2 Ww W 5 i 4&\\)\\\\ \\\\\\\§
1 T 7 22 i - 2777
R _. maﬂ Y 5 1%a....m.wm............... ﬁmxz\mw/\m ‘”..“”&..um....e.owm_w,n...“... \
0 = — : ESRDE 1177 SEREeN o A o
: :%«.....‘...i%_%aﬁn Bl ANV
e e B etk i et & N) ¥
=y - @ 8Ll .. FA ¢ W\M, Rades
- uam»w S L LI A | wnwhw«wwu o uBysgr .o w..u uBy8g2
L . ; S o A K
\ N
W N RN
: siferidand e F= | o
el QPet@pe g .“ﬁ “I
i 1| h peejpoeejpet iy H: 341 1448
1 124 +
- =i
SUERPEIRPYE
e"cre
- -gzz | 9zez| _
076zz) 8 92 ovez] _ foorez N O
e7cez a-ivz | 0702
e~cez | 079ez
6232
122 L3t 1132
(5] £192 [&) 4 6192 6193 €292 €291
L1z | L1921

......

\\\\\\\\\\\\\\\\\\\

s 2 S

PR

\\\\\\

e rLl. .
uBjesg /.

\\4

e ¢re

623%

NN %.%%f

MHANITN AN

DI

NN

[4éd
(44

”e
e

Y 74

[554

DN

L iéd
[414

| od
[424

> ////////////)\
11 M1 BT T TITIST -

\\\\\\\\

8" rrz

1821

1284648888888 8888d8d888888b8s088888
..............................

M MILE
Jipoaus

..................................

YIS S YYSX MY LY R yY I B FI L

YT YT XY AT I W VT TY" W FT-UU R FT 2T pFFY O
ssonvilssoauiisvavi]ismavi|sseaur]ssenuifsspavidsspavslrivaus]isonur|ssvavilssonu

RILLU WL
sapaur[2Imaue

T4 1AV
oy

§ SRR

NEURIRRRRNNNN 7///7///7///?%/%//%///#//,%///%/,/////////////////%

79

Data Bus

Input Register Status Register
|
M
Converszion to RNS 4
1
Y ¥
Register A Register B
Instructions:
1. Load Reg. A
(Inplies Perfora Control
AxB+C)
2. Load B Circuit
3. Ceonvert C to Binary
4. Load Status Instruction
§. Showv Status Bus
Register C
6. Showv Output
7. Clear C
8. Clear a, s, C, Convert Back
and Output Register
RNS to Binary Converter

Jr

output Register

-

Figure 4.4
Block Diagram of the PRVP

80

426 Multiply - Accumulate Section

Although the following discussion is specific for the PRVP, many points and procedures
can be generalized for any desired AU.

The use of hybrid adders in RNS processors has already been discussed in some detail
in the preceeding sections. The same idea would apply to a residue subtracter; however,
the designer should use great care to implement the PLA in the correct way for the chosen
RNS system. It may be far easier to input the relevant operands as negative numbers and
add them using a hybrid adder rather than using a hybrid subtracter. This would work
well in a filter application.

Due to the nature of the conventional parallel multiplier, a hybrid approach for an
RNS multiplier cell would not make sense. It would be far faster to use a look-up
approach to the problem since the major reason to going to an RNS is to speed up integer
multiplication, a notoriously slow operation in a binary processor.

Since modularity of design is important in VLSI, the look-up approach was taken for
the AU section rather than the hybrid approach. We know before the design was very far
that the RNS adders and multipliers would be very close together spatially in the chip. It
is far easier to efficiently use the available space for the AU unit if each of the subcells were
the same shape and roughly the same size. Thus, the choice of a look-up for the adder
portion of the AU was justified.

There was a seemingly unsurmountable problem with this approach, however. The
5-bit moduli required the use of 10 input PLA’s with 1024 minterms required. The
resulting PLA’s from this direct approach were approximately 10 times what could fit onto
}he chip. A unique heuristic solution to this problem was found, and was then refined even
arther.

We could use the approach of Fig. 4.5. This seemed like a very good idea on paper,
but had a major problem which will be discussed shortly. The approach of Fig. 4.5 is a
simple one conceptually and will be explained by a sequence of examples.

For every input term, we could eliminate from the input, we could cut the resulting
PLA size approximately by half. This is due to the number of minterms being divided by
two. Recall that the height of the PLA is directly proportional to the number of minterms
it implements. Therefore, if we remove one of the inputs from the input field, say the least
significant one, then we could use this bit as the select line to a 2:1 multiplexer and select
between two PLA’s. One PLA would implement the odd terms, and the other, the even
terms. Therefore, if each of the PLA’s shared the same inputs, two answers would be
generated as if the least significant bit were even or odd. The 2:1 multiplexer would then
choose the correct answer based upon what the least significant bit was. Therefore, we
have cut the huge PLA into two different pieces with an additional cost of several 2:1
multiplexers (one for each output bit). We could extend this idea for an arbitrary number
of inputs (within reason) eliminated from the PLA input field. It would be a good idea to
match the delays through the PLA stage and the multiplexer stage to find a optimal
combination.

What has this gained? In theory, the fragmented version of the look up should be the
same size as the original, unfragmented version of the PLA. What saves us from this is the
ESPRESSO program. It turns out that the smaller the PLA, the better ESPRESSO is
able to minimize the number of required minterms. Therefore, we can usually expect an
area savings by using this method. Another important advantage to this method is that we
have essentially broken up the huge, slow single PLA into smaller, parallel faster ones.
Thus we have achieved a very rare combination in VLSI design—we have both decreased the
size of a logic function and increased its speed simultaneously.

81

sel

Input Operands
10
9 9
EVENPLA ODDPLA
Outputs Outputs
J
Y i Y \

0 1 0 1 0 1 01 0 1
2:1 mux —»{ 2:1 mux » 2:1 mux > 2:} mux p——¢ 2:1 mux
') ' ' '

Output Bits
Figure 4.5

PLA Size Reduction

82

The main problem of this approach is that we have neglected the routing from the
outputs of the PLA’s to the multiplexers. Fig. 4.6 illustrates this point. There are so
many signals that must cross each other that the interconnect area eliminates the size
advantage of this approach. This was learned after every PLA in the PRVP was generated
and was in the file system.

As compared to inputs, additional outputs do not increase the size of PLA’s nearly as
much as inputs. After some time, we found a solution to the problem of Fig. 46 . A
mapping similar to the one just discussed could be made, but the job could be portioned in
a different way. We could assign one PLA to each bit of the resulting output field. For
example, a modulo-31 adder would have five bit outputs, so we would assign five PLA’s for
the implementation of the function. We could then "peel off* some of the inputs as before,
say the two least significant bits from one operand and the least significant bit off of the
other operand. Each of the PLA’s would be programmed to yield eight different answers
for a given 7-bit input. These eight outputs would correspond to the eight different correct
answers as if the three bits that have been eliminated from the input space of the PLA
were actually in the input field. We then use the three bits as select lines for an 8:1
multiplexer which would select the correct answer in all five PLA’s. Fig. 4.7 illustrates
how the interconnect problem was vastly reduced. This method was smaller than the
method of Fig. 4.6 since the number of PLA’s was reduced from 8 to 5. For smaller width
moduli (4 to 6 bits), this method works ideally as compared to the method of Fig. 4.6.

We could arbitrarily choose the bits from the input field that go to the multiplexer.
However, we could take advantage of the restricted input ﬁelg magnitude to help
ESPRESSO reduce the PLA size. For example, we know that if we are constructing a
modulo-17 adder, the inputs will not have a magnitude of over 16. So, if we use the least
significant bits of each input operand, we can take advantage of all the DON'T CARE
c}cimggcgfs, of the inputs to minimize the outputs. This is the approach taken in the AU of
the .

Fig. 4.8 illustrates a typical layout of the AU section in the PRVP. All the other
moduli have exactly similar arrangements. It is evident that the connections from the PLA
to the MUX for each output bit are very compact and contain no crossovers, which greatly
eased the layout. The adder and the multiplier were laid out separately and assembled
together later to help automate the design process. Obviously, the use of a "template"
would help construct of all these units. A template is a master cell with the PLA’s
removed but with markers inside the cell where each of the PLA’s would go. The designer
merely drops each of the desired PLA’s at its marker and makes small corrections to the
design depending on the actual size of each PLA. This method reduced the construction of
the AU components from 90 minutes (starting from scratch each time) to an average of 15
minutes per unit. When there are more than 100 units to construct (including the convert
back hardware?, the time savings is enormous. Of course, automating the design process at
this stage would be indicated from the modularity of each cell in a general AU. Those with
excellent software ski’” could automate 95% of an RNS processor.

We could have used the portioned method of PLA construction in the conversion
from binary to RNS. However, the shape of the resulting cell was not right for the
%%ogplan of the PRVP. Thus, straight look-ups were used instead of the partitioned

8.

The Microsoft QuickBASIC programs used to generate the cells in the AU of the
PRVP are given in [36].

4.2.7 Mixed Radix Conversion

The conversion of a number in RNS format to binary using the Chinese Remainder
Theorem involves binary multiplication in its intermediate steps. Operations such as

83

Cost of Interconnect in PLA Size Reduction

84

00 PLA 01 PLA 10PLA 11 PLA
Outputs Outputs Outputs Outputs
}2
RN IR i 44y HER
0o 1 2 3 01 2 3 0 1 2 3 1 2 3
el 4:1 MUX - 4:1 MUX ——{ 4:1 MUX 4:1 MUX
! ! Outputs ! !
Figure 4.6

Input Operands

N 10
N

N N 3 N 3 N8

BN N N N N
PLA 1 PLA 2 PLA3 PLA 4 PLAS
Y YyvYVY y KA Y

4:1 MUX »14:1 MUX -»14:1 MUX 4:1 MUX 4:1 MUX
MSB LSB

Figure 4.7

Solution to the Interconnect Problem

85

E
N
3
N
N
237 N .
N 3
132 E ‘ﬁ #3
E
(B
- Fs 4
Hle 27% # E 28410 3‘ le
i \ NI
N
N
N
N
\
' N
Blwmux 81imux N 8imux 8imux B8imux
Bimux_80 Bhux-i S Bimux_2 Oimux_3 8imux_«
ML 2%
ki #"fa add’
4 44 rQ 27“,! i14‘ -] 27kh; *)
- ‘ ,)
81mux 8imux 81imux 8imux 8imux
B81lmux_8 8imux_§ 8imux_2 8imux_8 ‘Blmux_®

Figure 4.8
Typical AU Piece in the PRVP

86

binary multiplication are what an RNS was trying to avoid in the first place. This is why
the mixed—conversion process using the Modified Chinese Remainder Theorem is preferred
due to the use of modular arithmetic in the intermediate stages. The conversion of a
number from RNS to unsigned binary is given by the following equation [21]:

izn -1
X =ay I |mi+ +++ 4+ agmomg + aom; + a
i=1

where x is a mixed radix number, the m;’s are the moduli in the system, and the a;’s are
coefficients to be found by the RNS to binary converter. This equation is first taken
modulo m;. Then, all of the terms except for the last a are divisible by m; which means
that they all are identically zero. Therefore, (x)mod(m;) = a; which implies that a, is the
first residue digit. Since. (x-a;)/m;=b; is an integer value without a remainder,
(b,)mod(mg exists and is equal to a;. Repeating this process for all the moduli in the
system yields all the required coefficients.

We can then get the coefficients by a residue subtraction and residue division applied
successively. The éivision can be reduced to multiplying by the multiplicative inverse of
the moduli we are working on. The multiplicative inverse of a number n modulo m is the
solution to the following:

(ni)mod(m) =1

where i is the number that is desired. The number i always exists for all n’s as long as m is
a prime number.
This process is illustrated with the following example 4 moduli system:

(8,5,7,3)

Assume that the residue representation of a number is (7,4,6,2). Starting from left to
right, we see that 7 is a; and we then subtract 7 from the three remaining digits. This
leaves (x,2,6,1) which we multiply by (x,2,1,2) which is the multiplicative inverse of 8 of
the remaining moduli. We then have (x,4,6,2), and 4 is the value of 4 is subtracted from
the remaining moduli which yields (x,x,2,1) which is multiplied b- (x,x,3,2) to yield
(x,x,6,2). 6 is the value of and is subtracted from the remaining moduli to yield (x,x,x,2)
which is then multiplied by (x,x,x,1). Therefore 2 is the final coefficient and the number
18:

X =T + 4(8) + 6(8x5) + 2(8x5x7) = 839

This process only gives the positive (unsymmetric)l version of x. If a symmetric system is
used, the binary number 839 would be added to (the negative of the dynamic range) to get
the correct signed result.

Fig. 4.9 shows the hardware implementation of the conversion from RNS to binary
for this example. The subtraction and multiplicative inverse operations can be performed
by one PLA. The coefficients are fed to a PLA which multiplies by the required radix, and
is then summed up by binary adders. Fig. 4.10 shows the required hardware which detects
and converts the output of the Mixed-Radix Conversion (MRC) process to a signed 2’s
complement output.

Reference é36] contains the Microsoft QuickBASIC code which generates all the
PLA’s for a MRC converter. The Radix PLA’s (the PLA’s which multiply the coefficients

by the radix) were generated by hand using the binary calculator tool available on the SUN
workstation.

87

MOD S MOD 7 MOD 3
MOD 8
A
- + + *
PLA PLA PLA
- X1 X2
\
+ +
PLA PLA
X3 X2
i \
+
X8 X8X5 PLA
PLA PLA
X1
\ I
X8X5X7
ADDER FLA
{ ADDER
ADDER
BINARY OUTPUT Figure 4.9

Conversion from RNS to Binary

88

-

(-(most positive # in RNS system)) OUTPUT OF MRC

Y

M8 2's COMPLEMENT ADDER

2's COMPLEMENT ADDER

(-(dynamic range of the system)) BINARY
OUTPUT

Figure 4.10
Sign Detection Hardware

89

The binary adders at the end of the MRC can be implemented using carry-select
adders to increase the speed of the conversion process. This is the method used in the
PRVP. Notice that the size of the adders depends on the range of the inputs to them.
Therefore, the adders near the top of the process which adds the numbers resulting from
the coefficients generated first are not as wide as those near the bottom generated from the
later coefficients.

Fig. 4.11 shows the MRC in the PRVP. This is a large structure, and contains many
interconnects. Notice that some of the PLA’s were not partitioned as described previously.
This was done so that the width of the MRC would fit into the over—sized frame used for
the PRVP. If the block diagram of Fig. 4.9 were extended for an 8 moduli system, it
would follow Fig. 4.11 exact%y. However, the sign detection circuit of Fig. 4.10 was
modified in order to increase the speed of the MRC.

We could eliminate the first block of Fig. 4.10 which detects the magnitude of the
number coming out of the MRC if we partitioned the RNS so that we could tell the sign of
the output of the MRC by looking at the first bit. In other words, if all numbers from
00000000 to TFFFFFFF were positive and 80000000 to FFFFFFFF were negative, we
could detect the sign of the number by looking at the MSB. However, since the dynamic
range of the PRVP’s RNS system is larger than 32 bits, possible errors may result at first
glance if we chose the system [2147483647,—4537866023] for the (31x29x23x19x17x13x11x7
dynamic range of the system. In other words, we map all numbers with a zero in the MS
as positive numbers and all others as negative numbers in the system. All of the numbers
greater than 4294967296 are mapped out of harm’s way into the negative numbers less than
~2147483648 which exceeds the bus size of 32 bit 2’s complement numbers. Therefore, if
the system is partitioned in this manner, the MSB and the carry out of the final
carry—select adder (bits 32 and 33) could simply be OR’ed together to detect the sign of the
number. This sign information along with the desired format (does the programmer want
true or 2’s complement outputs?) stored as a single bit in a status register conld control the
2:1 multiplexers at the bottom of the MRC. This is the system partition chosen for the
PRVP. The constant added to the bottom if the sign is negative is simply the 2's
complement form of (—6685349671), the dynamic range of the system.

4.3 PRVP DESIGN DETAILS

43.1 General Considerations

The designer of an RNS processor will find that most effort will go into floorplanning and
routing than is usually devoted for a fully custom design. It is easy to see this since nearly
all of the basic cells in an RNS processor is generated automatically by the use of software
tools such as MPLA, which was discussed earlier. The design of an RNS processor is
almost as fast as a semi—custom processor due to this fact. The difference lies in
optimizing the floorplan and interconnect by human rather than machine intelligence.

It could be stated that the inputs and outputs of an RNS functional block are
grouped in specific areas of the cell in question. These blocks are usually combinational in
nature; therefore, there are only data signals to route with no sequential control signals to
worry about. All control signals are attached to internal registers and pipes, which are
composed of either dynamic or static elements.

As a result, a register—transfer architecture is usually used in an RNS processor. This
design could be pipelined to nearly any depth, since an RNS processor will be used in DSP
(Digital Signal Processing) where latency isn’t generally any problem. However, if the

90

SIeMpIeH Areurq 03 UOIIIAUO) 3} JO nQ e

1Ty oSy
)
29
€ 16 198 2 g0 3= q
= . T H 14 Y 1T} a
FTI1) - ol
8 oS = - o
"1 bue &5 344 BeBX |qfA
e
(]
e zr | oTIr "o 876¢ e8¢ 0"LE 0"9E s7ec f| o7ze Borl® %lesz
1662 {3 62€Z {334 6261 €Z6% 6161 ol et | sz Ho - e |
14]
078l gy ']
07sz erz e cz 02z e 12 878z 0761 w1 T Al e B W
) { A 94 1 74
1661 6268 6261 16L1 62LE 8ZLY 61LE un,,
N
. \ \ \

91

RNS processor has a nontrivial instruction set, dependencies may occur which must be
accounted for either in the hardware or in the compiler design of the system if pipelining is
used.

It can then be stated that the RNS portion of the processor is driven by the
functionality and the placement of registers and pipes is driven by the timing (speed)
specifications of the processor. This is only true in an upper-level design—-sense, since both
these areas have some overlap. Controllers for the internal registers can be designed using
some standard state-machine design techniques.

The pieces of a RNS processor can be reused in other designs. Extending this idea,
an engineer can fabricate conversion to RNS and RNS to binary chip sets with the AU
portion of the processor specifically designed. Extending this idea even further, a library of
RNS cells can be easily constructed which could be used by existing auto-routing and
auto-placement software to build semi—custom chips. The design of such a software
system is one logical extension of the work presented in this section.

4.3.2 Details of PRVP

Nearly all control systems can be expressed in matrix format. This means that the
implementation of these processors uses a vector-processor approach to the architecture
since calculations involving matrices can be decomposed into vector operations. One useful
element for a vector processor is a multiply-accumulator. This is the basic function
decided upon for the PRVP. At first, the operands were specified to be 32 bits wide.
However, this made little sense from a signal processing standpoint since most available
Analog to Diﬁital Converters (ADC’s) are 8 bits wide with 16 bits being the larger size
available. These are not currently available in speeds approaching the PRVP, so the
PRVP can handle the calculations for several different control systems with data coming
from several ADC’s which may be polled by the SF1 master processor. Since the PRVP
was a fat design to begin with, the conversion from binary to residue for 32 bits was
trimmed to 16 bits. Also, 16-bit operands yield a 32-bit result when they are multiplied
together. If 32-bit operands were used with a 32 bit dynamic range, the programmer
would have to worry constantly about overflow.

The projected maximum speed for the SF1 stack bus clock is 10 Mhz. Since
oper?.tigns are performed on every phase of the clock, pipe delay times of 50 ns are
required.

The conversion from residue to binary would only be required occasionally as
compared to the multiply-accumulate operation, so the conversion from binary to residue
and the AU was optimized for speed. The converter for residue to binary was optimized for
speed as area allowed. In a controls environment, signed operations are required, so the
PRVP was designed to handle signed and unsigned operands, with the choice being up to
the software developer.

The controller in the PRVP is specific to the SF1 stack bus. However, it would take
about 2 days to change the control circuit for a different control scheme. This illustrates
how independent an RNS processor is to the way it receives instructions due to the register
transfer architecture. Other processors would have to be completely redesigned to efgct a
control scheme change, since they have control signals embedded into their logic.

_ Figure 4.12 shows the entire layout of the PRVP. The conversion hardware
dominates the area of the chip, with the AU, the control circuit, and the internal registers
taking up a small part of the available area. The size of the design is roughly 10,300
microns square with over 130,000 transistors inside it. It is the largest chip designed at
WSU to date. Fig. 4.13 shows a floorplan of Fig. 4.12 so that each section of the design can
be seen more clearly. It can be seen that interconnect has been painstakingly optimized to
reduce the area required by the design.

92

d RS

SHERRRARAERRLERRERSERN SR ERSSEENE AR NN

i\E}\\\\}\\Q\\\\\\\~~

N

B%Z?/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/

G

V7 AAAAAL

LB EENLEL

N |l acel9 accl?
N

§‘ 162.8 || 163_8
N

N A RE AR ATV EL

: C-TGQSSNx\\‘!N“?f

'\§
\

~ '.'\'\'E}\

Q)

o

= ~

acc29

L

172_0

IR

acc31

173_9

: ~con}rollerl

MR XA

0

: X N N

N P N :\
N N ey 17198 1723 § 1729 S 1731 1923 § 1929 | 1831 §}
A\:] N N\

DN 7. 1984 28_0] 21_8 N 22_0 f23_0} 24_9 | 25.98 [
W 18_8 N N

NN e\

A A N\
aal* . o 4 //; 2P r7 S I'I'I.I'I'I" N\
TN QI ks s b o L RN
g/}\ {1 | N B \ A
NN 1291131713195 1323 1329 § 1331 2329 N2331{ 2931 E:
BN] y N WA
‘5: Te_e.¢'-1{32_0(/33_0 ‘1535-0537 1380398 40_8 [41.8f42.0R%
N N N N
AN T 77777 AR > N §§
Al NN L AASREAL - ' />7 . \;S

@S 0] da30 | ddal - 463 178 B//v RGOS N

BNy, Bnet s uar -’ﬂ%,‘_/m CY X
NS CAS 120t 4430 °]. 1. d T a0 7{/4da rCIZRA N
'$ (s b’h ""‘T"d a0 ['abaz |. 8| 8838" 1) -6'2“0:’.:E

\\\\\\\‘i\vv

SN\ \\\\\\\\\‘\\\\ NN
et

Figure 4.12
Lay Out of the PRVP

93

\\\\\\k\\\

.....................

R R

R
PRI

:”'

(|
m\m\m\m\\m\m\ﬁ\m\\ﬁ\\m\

R RNV I IVIIIIRIR N

N

7.7
N

I N 4

\

PADS
REGISTER REGISTER
AU
BINARY TO RNS
REGISTER
AU REGISTER
CONTROL
AU
REGISTER
RNS TO BINARY
REGISTER i
PADS
Figure 4.13

Floor Plan of the PRVP

94

43.3 Conversion From Residue to Binary Details

A block diagram of the conversion from binary to residue is shown in Fig. 4.14. The
structure is composed of the conversion PLA’s which maps two 8 bit fields of the input into
their particular residue representation. The output of these PLA’s are added by a
ripple—arry adder which is composed of 2-bit binary full adder circuits. The layout of the
full adder circuit is shown in Fig.